

education

Department:
Education
North West Provincial Government
REPUBLIC OF SOUTH AFRICA

PROVINCIAL ASSESSMENT

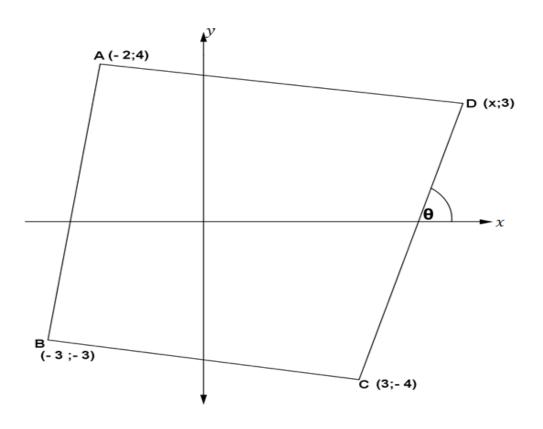
GRADE 12

TECHNICAL MATHEMATICS P2

JUNE 2025

MARKS: 150

TIME: 3 hours


This question paper consists of 15 pages and a 2-page information sheet.

INSTRUCTIONS AND INFORMATION

Read the following instructions carefully before answering the questions.

- 1. This question paper consists of 11 questions.
- 2. Answer ALL the questions in the SPECIAL ANSWER BOOK provided.
- 3. Clearly show ALL calculations, diagrams, graphs, etc. that you have used in determining your answers.
- 4. Answers only will NOT necessarily be awarded full marks.
- 5. If necessary, round off answers to TWO decimal places, unless stated otherwise.
- 6. Diagrams are NOT necessarily drawn to scale.
- 7. You may use an approved scientific calculator (non-programmable and non-graphical), unless stated otherwise.
- 8. An information sheet with formulae is included at the end of the question paper.
- 9. Write neatly and legibly.

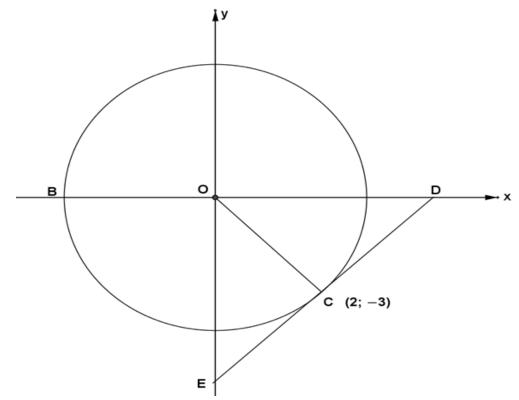
The diagram below shows quadrilateral ABCD with vertices A(-2; 4), B(-3; -3), C(3; -4) and D(x; 3). The angle of inclination of the line DC with the x- axis is θ .

Determine:

1.1 the gradient of BC (2)

1.2 the equation of BC (2)

1.3 the *x*-coordinate of D if the gradient of AD is $-\frac{1}{7}$ (2)


1.4 whether BC is parallel to AD, give a reason for your answer (2)

1.5 the midpoint of AB (2)

the equation of the line perpendicular to BC and passing through (-1; -4) (3)

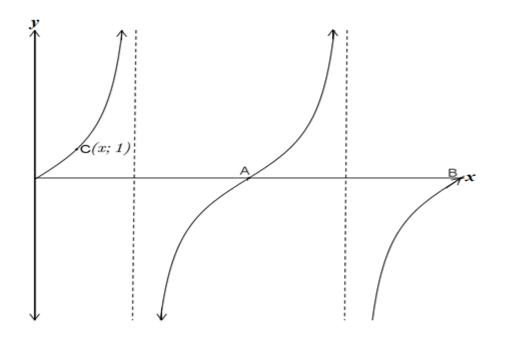
1.7 the value of θ (3) [16]

2.1 In the diagram below, O is the centre of the circle. OC is the radius, ED is a tangent to the circle at point C.

Determine the:

2.2 Given:
$$\frac{x^2}{(\sqrt{7})^2} + \frac{y^2}{3^2} = 1$$

- 3.1 Determine the following if $\cos \beta = \frac{3}{5}$; $\beta \in (0^\circ; 90^\circ)$ and $\alpha = \frac{\pi}{6}$
 - 3.1.1 β (Round off to the nearest whole number) (2)
 - 3.1.2 Convert α to degrees. (1)
 - $3.1.3 \quad \sin(2\beta) \sec \alpha \tag{3}$
- 3.2 Given: $\tan \theta = -\frac{4}{5}$ and $\theta \in [0^\circ; 180^\circ]$
 - 3.2.1 Draw a diagram to illustrate the above ratio. (1)
 - 3.2.2 Hence, use the diagram to determine $cos^2\theta + sin^2\theta$ without the use of a calculator. (3)
- 3.3 Determine the value of x if $8\cos x 2 = 2$ for $x \in [0^\circ; 360^\circ]$ (3) [13]

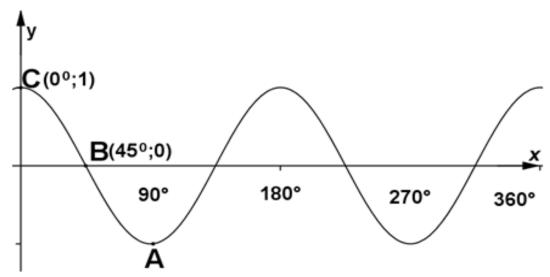

QUESTION 4

4.1 Simplify the following:

$$\frac{\cos(\pi+\theta).\tan(180^{\circ}+\theta).\sin^{2}(180^{\circ}-\theta)}{-\tan(180^{\circ}-\theta).\sin\theta.\cos(180-\theta).\frac{1}{\sec\theta}}$$
(7)

Prove that:
$$\frac{\sin^2\theta}{\cos^2\theta} + \frac{\cos^2\theta}{\cos^2\theta} = \frac{1}{\cos^2\theta}$$
 [11]

The graph below represents the function defined by $g(x) = \tan x$ for $0^{\circ} \le x \le 360^{\circ}$

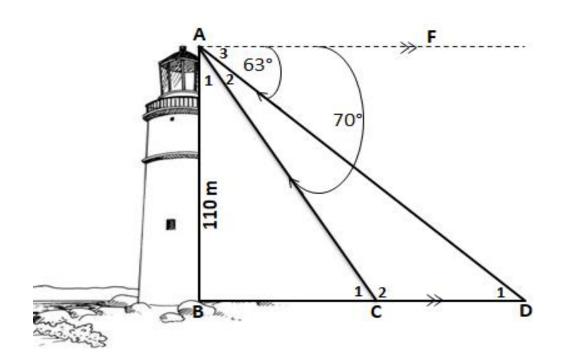


5.1 Use the graph above to determine the following:

$$5.1.2$$
 the period of g (1)

5.2 The graph below represents the function defined by:

 $f(x) = \cos 2x$ for $0^{\circ} \le x \le 360^{\circ}$



- 5.2.1 What is the amplitude of f? (1)
- 5.2.2 What is the period of f? (1)
- 5.2.3 Determine the coordinates of the turning point at A. (2)
- 5.3 Use the graph above to determine the following:
 - 5.3.1 the value(s) of x for which f is increasing if $x \in (0^\circ; 180^\circ)$ (2)
 - 5.3.2 the value(s) of x for which f(x) < 0 if $x \in (0^\circ; 180^\circ)$ (2)
- 5.4 Write down the range of f. (2) [16]

The sketch below shows AB, a light house perpendicular to the horizontal level at B. The light house is 110 m high.

C and D represent the position of two boats respectively.

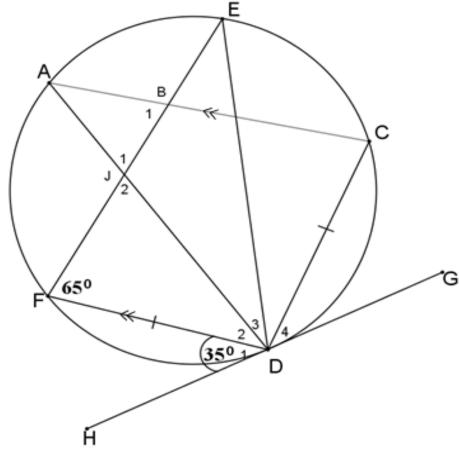
 $\hat{A}_3 = 63^{\circ}$ and $F\hat{A}C = 70^{\circ}$

6.1 Determine with reason the sizes of:

6.1.1
$$\hat{C}_1$$
 (2)

6.1.2
$$\hat{A}_2$$
 (1)

6.2 Determine the length of AC. (2)


6.3 Determine the distance between the two boats, CD. (3)

6.4 Use the cosine rule to determine the length of AD. (2) [10]

7.1 In the diagram below, HG is a tangent to the circle at D.

DFE = 65° and \widehat{D}_1 = 35° A, E, C, D and F are on the circumference of the circle.

CD = DF and $AC \parallel FD$

7.1.1 Write down, stating reasons, THREE other angles equal to 35°. (6)

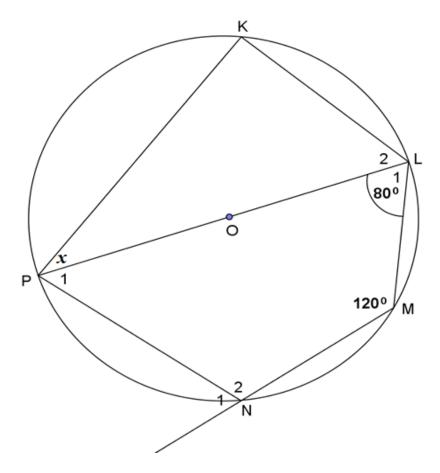
Determine, with reason(s), the size of the following angles:

$$7.1.2 \quad A\widehat{D}H \tag{1}$$

$$7.1.3$$
 \hat{C} (2)

$$7.1.4$$
 \widehat{CDF} (2)

$$7.1.5 \qquad \widehat{D}_3 \tag{2}$$


7.1.6 Prove that
$$\Delta JAB \parallel \Delta JDF$$
 (3)

7.2 In the diagram below, O is the centre of the circle.

PLMN is cyclic quadrilateral.

$$\widehat{L}_1 = 80^\circ$$
 and $\widehat{M} = 120^\circ$.

MN is extended and forms a straight line.

Determine, by giving reason(s), the following:

$$7.2.1 \quad \widehat{N}_1 \tag{2}$$

$$7.2.2 \hat{P}_1 (2)$$

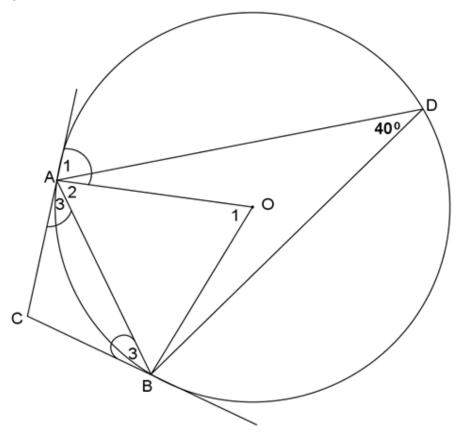
$$7.2.3 \quad \widehat{K} \tag{2}$$

7.2.4 Solve for
$$x$$
 if KL || PN (2) [24]

Technical Mathematics/P2 NW/June/2025

QUESTION 8

8.1 Complete the following theorem:


Two tangents from the same point outside the circle are ... (1)

8.2 In the diagram below, O is the centre of the circle.

AC and BC are tangents to the circle.

D is a point on the circumference of the circle and forms chords AD and BD.

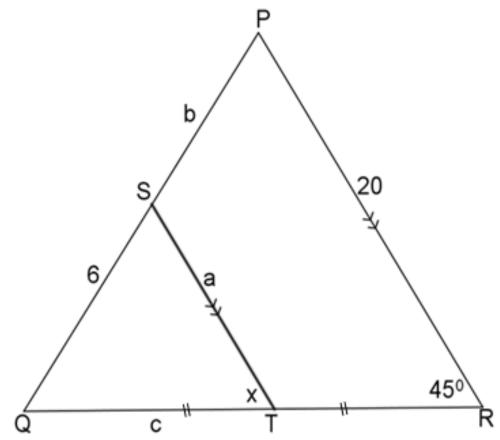
$$\widehat{D}=40^{\circ}$$

Determine, by stating reason(s), the size of the following angles:

8.2.1
$$\hat{Q}_1$$
 (2)

8.2.2
$$\hat{A}_1$$
 (2)

8.2.3
$$\hat{A}_2$$
 (2)


8.2.4
$$\hat{A}_3$$
 (1)

8.2.5
$$\hat{C}$$
 (3) [11]

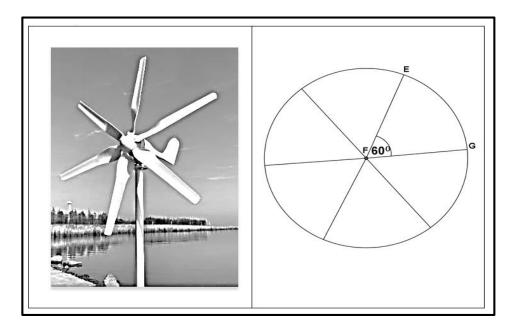
9.1 Complete the following theorem:

The line through the midpoint of one side of a triangle and parallel to another side of a triangle is ... of the third side. (1)

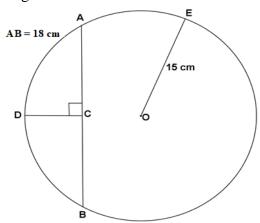
9.2 In the diagram below, ST \parallel PR, $\hat{R} = 45^{\circ}$, QS = 6; PR = 20 and QT = c

Write down, stating reasons, the values of the following:

9.2.1 a (2)


9.2.2 b

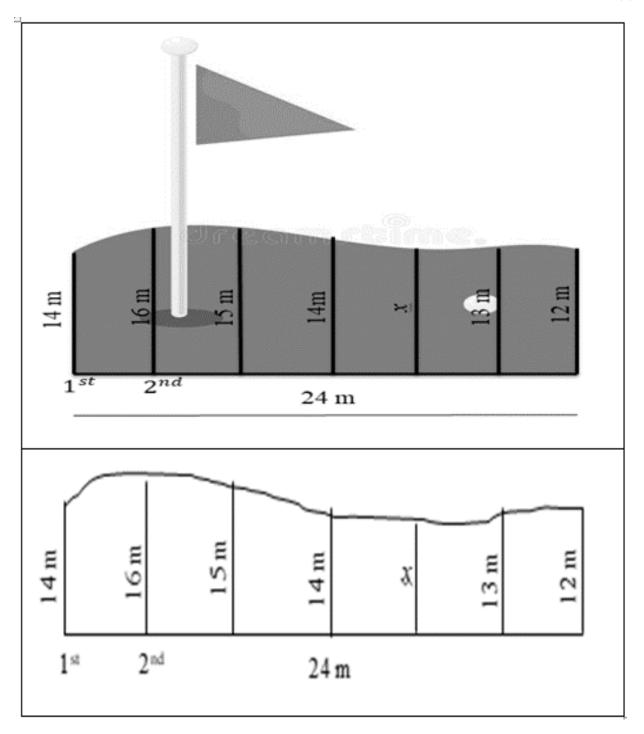
9.2.3 x (2)


9.2.4 Determine the length of QR in terms of c. (1) [7]

10.1 The picture below shows a small 6 blade wind turbine for residents to generate their own electricity. The diameter of the turbine is 1,2 m. The turbine is rotating at 20 revolutions per minute.

> The diagram next to the picture represents the 6 blades. The angles between the blades are 60° each.

- 10.1.1 Determine the angular velocity in radians per second.
- 10.1.2 Determine the circumferential velocity of the turbine. (4)
- 10.1.3 Calculate the area of sector EFG. (4)
- 10.2 In the diagram below, the length of chord AB = 18 cm and OE = 15 cm. Determine the length of DC.

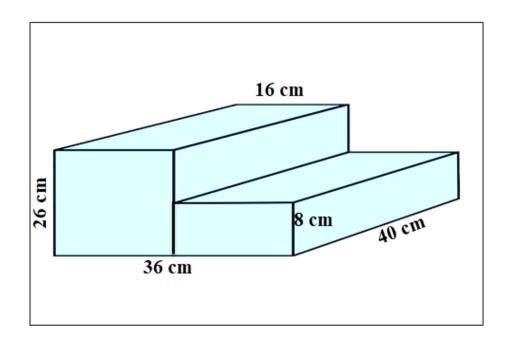

(4) [16]

(4)

Determine the area of a part of a golf green, by using the mid-ordinate rule. The length of 24 m is divided into 6 equal parts.

The value of x is equal to the sum of the 1^{st} and 2^{nd} ordinate divided by 2.

(5)


Grade 12

In the diagram below is a solid two-step wooden stair with an **open basis.** The stair is build out of two rectangular wooden boxes that is glued together.

The following formulae may be used:

$$Surface\ area\ of\ rectangular\ prism = 2lb + 2lh + 2bh$$

 $Volume = l \times b \times h$

- 11.2.1 Determine the volume of the wooden stair. (4)
- 11.2.2 Calculate the surface area of each of the two rectangular parts separately. (3)
- 11.2.3 Determine the total surface area of the wooden stair. (1) [13]

TOTAL: 150

Grade 12

FORMATION SHEET: TECHNICAL MATHEMATICS

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$x = -\frac{b}{2a}$$

$$x = -\frac{b}{2a} \qquad \qquad y = \frac{4ac - b^2}{4a}$$

$$a^x = b \Leftrightarrow x = \log_a b$$
, $a > 0$, $a \ne 1$ and $b > 0$

$$a > 0$$
, $a \ne 1$ and $b > 0$

$$A = P(1+ni)$$
 $A = P(1-ni)$ $A = P(1-i)^n$ $A = P(1+i)^n$

$$A = P(1 - ni)$$

$$A = P(1-i)^n$$

$$A = P(1+i)^n$$

$$i_{eff} = \left(1 + \frac{i}{m}\right)^m - 1$$

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$\int x^n dx = \frac{x^{n+1}}{n+1} + C \qquad , \quad n \neq -1$$

$$\int \frac{1}{x} dx = \ln x + C, \qquad x > 0$$

$$\int a^x dx = \frac{a^x}{\ln a} + C \quad , \quad a > 0$$

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

$$M\left(\frac{x_1 + x_2}{2}; \frac{y_1 + y_2}{2}\right)$$

$$y = mx + c$$

$$y - y_1 = m(x - x_1)$$

$$y = mx + c$$
 $y - y_1 = m(x - x_1)$ $m = \frac{y_2 - y_1}{x_2 - x_1}$ $m = \tan \theta$

$$m = \tan \theta$$

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

In
$$\triangle ABC$$
: $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$

$$a^2 = b^2 + c^2 - 2bc \cdot \cos A$$

area of
$$\triangle ABC = \frac{1}{2}ab \cdot \sin C$$

$$\sin^2\theta + \cos^2\theta = 1$$

$$1 + \tan^2 \theta = \sec^2 \theta \qquad \cot^2 \theta + 1 = \csc^2 \theta$$

$$\cot^2 \theta + 1 = \csc^2 \theta$$

Grade 12

 $\pi rad = 180^{\circ}$

Angular velocity = $\omega = 2\pi n$ Where n = rotation frequency

Angular velocity = $360^{\circ}n$ where n = rotation frequency

Circumferencial velocity = $v = \pi Dn$ where D = diameter and n = rotation frequency

Cirfumferential velocity $= v = \omega r$ where $\omega =$ angular velocity and r = radius

Arc length= $s = r\theta$ where r = radius and $\theta = \text{central}$ angle in radians

Area of sector = $\frac{rs}{2}$ where r = radius, s = arc length

Area of a sector = $\frac{r^2\theta}{2}$ where r = radius, s = arc length

 θ = central angle in radians

 $4h^2 - 4dh + x^2 = 0$ where h = height of segment,

d = diameter of circle and x = length of chord

 $A_T = a(m_1 + m_2 + m_3 + ... + m_n)$ where a = width of equal parts, $m_1 = \frac{o_1 + o_2}{2}$ and n = number of ordinates

OR

$$A_T = a \left(\frac{o_1 + o_n}{2} + o_2 + o_3 + o_4 + \dots + o_{n-1} \right)$$
 where $a = \text{width of equal parts}$, $o_n = n^{th}$

ordinate and n = number of ordinate