

## education

Department: Education North West Provincial Government REPUBLIC OF SOUTH AFRICA

### **PROVINCIAL ASSESSMENT**

**GRADE 11** 

# PHYSICAL SCIENCES P2 NOVEMBER 2024

Marks: 150

Time: 3 hours

This question paper consists of 12 pages and 4 data sheets.

Copyright reserved

Please turn over

#### INSTRUCTIONS AND INFORMATION:

- 1. Write your name on the ANSWER BOOK provided.
- 2. This question paper consists of NINE questions. Answer ALL questions in the ANSWER BOOK.
- 3. Start EACH question on a NEW page in the ANSWER BOOK.
- 4. Number the answers correctly according to the numbering system used in this question paper.
- 5. Leave ONE line between two sub-questions, for example between QUESTION 2.1 and QUESTION 2.2.
- 6. You may use a non-programmable calculator.
- 7. You are advised to use the attached DATA SHEETS.
- 8. Show ALL formulae and substitutions in ALL calculations.
- 9. Round off your FINAL numerical answers to a minimum of TWO decimal places.
- 10. Give brief motivations, discussions, et cetera where required.
- 11. Write neatly and legibly.

(2)

(2)

(2)

#### **QUESTION 1: MULTIPLE CHOICE QUESTIONS**

Various options are provided as possible answers to the following questions. Each question has only ONE correct answer. Choose the answer and write only the letter (A–D) next to the question numbers (1.1 to 1.10) in the ANSWER BOOK, e.g. 1.11 B.

- 1.1 The type of bond which occurs when two atoms share one or more electron pairs will always be ...
  - A ionic.
  - B polar.
  - C metallic.
  - D covalent.
- 1.2 The molecular shape of  $NH_3$  is ...
  - A linear.
  - B trigonal planar.
  - C angular.
  - D trigonal pyramidal.
- 1.3 Which ONE of the following chlorides will most likely have the most ionic character?
  - A LiCł
  - B CsCł
  - C BeCl<sub>2</sub>
  - D CaCl<sub>2</sub>
- 1.4 A solution of calcium chloride  $(CaC\ell_2)$  is added to bromine  $(Br_2)$  water. The force of attraction that exists between  $CaC\ell_2$  particles and  $Br_2$  is called  $a(n) \dots$  interaction.
  - A ion-dipole
  - B ion-induced dipole
  - C dipole induced dipole
  - D dipole-dipole

(2)

4

- 1.5 How many moles of copper (II) oxide are there in 52,8 g of the substance?
  - A 0,369 mole
  - B 0,664 mole
  - C 1,51 mole
  - D 2,71 mole

(2)

- 1.6 The boiling point of CH<sub>4</sub> is much lower than that of HF. Which ONE of the following best explains this difference in boiling points?
  - A HF molecules are more polar than CH<sub>4</sub> molecules.
  - B CH<sub>4</sub> molecules are more polar than HF molecules.
  - C There are London forces between CH<sub>4</sub> molecules.
  - D There are dipole-dipole forces between  $CH_4$  molecules. (2)
- 1.7 A fixed amount of gas occupies a volume **V** exerts a pressure **P** at a constant temperature. If the volume is doubled, the new pressure of the gas will be ...
  - A <sup>1</sup>/<sub>4</sub> P
  - <sup>B</sup>  $\frac{1}{2}$  P
  - C P D 4 P (2)
- 1.8 Consider the incomplete chemical equation below.

 $X + 2HNO_3 \rightarrow Zn(NO_3)_2 + H_2O + CO_2$ 

Which ONE of the following is represented by **X** in the above equation?

- A ZnCO₃
- B ZnHCO<sub>3</sub>
- C ZnCO<sub>2</sub>
- $D \qquad Zn(OH)_2 \tag{2}$

- 1.9 Which ONE of the following statements is TRUE for an EXOTHERMIC reaction?
  - A More energy is released than absorbed.
  - B More energy is absorbed than released.
  - C Heat of reaction ( $\Delta$ H) is positive.
  - D Energy of the products is greater than the energy of the reactants.
- 1.10 Consider the reaction represented by the balanced ionic equation below.

 $Cr_2O_7^{2-}(aq) + 14H^+(aq) + 3S^{2-}(aq) \rightarrow 2Cr^{3+}(aq) + 3S(s) + H_2O(\ell)$ 

Which ONE of statements below is true when this reaction takes place.

- A The oxidation number of sulphur does not change.
- B  $S^{2-}$  is reduced by the  $Cr_2O_7^{2-}(aq)$ .
- C  $H^+(aq)$  oxidises the S<sup>2-</sup>(aq).
- D  $S^{2-}(aq)$  is oxidised by the  $Cr_2O_7^{2-}(aq)$ .

(2) **[20]** 

(2)

#### QUESTION 2 (Start on a new page.)

A chemical bond is defined as a mutual attraction between two atoms resulting from the simultaneous attraction between their nuclei and the outer electrons. Answer the following questions in terms of chemical bonding.

| 2.1 | Define th             | e term <i>electronegativity</i> .                                                                                     | (2)                  |
|-----|-----------------------|-----------------------------------------------------------------------------------------------------------------------|----------------------|
| 2.2 | Show by between       | means of electronegativity what type of bond will be formed the elements in each of the following substances.         |                      |
|     | 2.2.1                 | LiF                                                                                                                   | (2)                  |
|     | 2.2.2                 | Cł <sub>2</sub>                                                                                                       | (2)                  |
| 2.3 | Consider              | the following molecules and answer the questions that follow:                                                         |                      |
|     |                       | $CO_2$ , $C_2H_2$ and $CH_4$                                                                                          |                      |
|     | 2.3.1                 | Define the term valence electrons.                                                                                    | (2)                  |
|     | 2.3.2                 | How many valence electrons does carbon have.                                                                          | (1)                  |
|     | Draw the              | Lewis structure for the following molecules:                                                                          |                      |
|     | 2.3.3                 | CO <sub>2</sub>                                                                                                       | (2)                  |
|     | 2.3.4                 | CH <sub>4</sub>                                                                                                       | (2)                  |
| 2.4 | Write dov             | vn the molecular shape of the following molecules.                                                                    |                      |
|     | 2.4.1                 | CO <sub>2</sub>                                                                                                       | (1)                  |
|     | 2.4.2                 | CH <sub>4</sub>                                                                                                       | (1)                  |
| 2.5 | The bond              | I length between the carbon atoms in $C_2H_4$ and $C_2H_6$ are compared.                                              |                      |
|     | 2.5.1                 | Define the term bond length.                                                                                          | (2)                  |
|     | 2.5.2                 | Fully explain why the bond length of the bond between the carbon atoms in $C_2H_4$ is shorter than that in $C_2H_6$ . | (3)                  |
|     | 2.5.3                 | What is the relationship between the bond length and bond energy.                                                     | (2)                  |
|     | 2.5.4                 | How will the bond energy of the bond between the carbon atoms in $C_2H_4$ compare to that in $C_2H_6$ ?               |                      |
|     |                       | Choose from SMALLER THAN, GREATER THAN or EQUAL TO.                                                                   | (1)                  |
| 2.6 | Explain the using the | the difference between a polar molecule and a non-polar molecule, compounds $CHCl_3$ and $CCl_4$ as examples.         | (4)<br>[ <b>27</b> ] |

#### QUESTION 3 (Start on a new page.)

During an investigation, the MELTING POINTS of the hydrogen halides were determined. The results of the investigation are shown in the graph below.



[10]

#### QUESTION 4 (Start on a new page.)

The relationship between pressure and the volume of an enclosed gas at 30 °C is investigated, by varying the pressure on the gas and then observing the corresponding volume occupied by the gas in each case.

The results obtained are shown in the table below.

| p (kPa) | V (cm³) |
|---------|---------|
| 128,5   | 35      |
| 180     | 25      |
| 220     | V       |
| 330     | 20      |

| 4.1 | STATE                     | E the gas law being investigated.                                                                                                       | (2)                |
|-----|---------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| 4.2 | For thi                   | s investigation write down the:                                                                                                         |                    |
|     | 4.2.1                     | Independent variable.                                                                                                                   | (1)                |
|     | 4.2.2                     | TWO controlled variables.                                                                                                               | (2)                |
| 4.3 | Calcul                    | ate the value represented by the letter ${f V}$ in the table.                                                                           | (3)                |
| 4.4 | Hydro                     | gen and helium are very close to ideal gases.                                                                                           |                    |
|     | 4.4.1                     | Write down TWO properties of an ideal gas.                                                                                              | (2)                |
|     | 4.4.2                     | Write down the TWO conditions under which real gases behave more like an ideal gas.                                                     | (2)                |
| 4.5 | Explai<br>increa<br>volum | n, in terms of the kinetic molecular theory, the effect that an se in the temperature of a gas will have on its pressure at constant e. | (2)<br><b>[14]</b> |

(2)

#### QUESTION 5 (Start on a new page.)

One of the steps in the preparation of sulphuric acid in the industry is represented by the following reaction:

 $2SO_2(g) + O_2(g) \rightarrow 2SO_3(g)$ 

The graph below shows the energy change during this reaction.



- 5.1 Write down the type of reaction represented by above graph. Choose from EXOTHERMIC or ENDOTHERMIC. Explain your answer.
- 5.2 Calculate the change in enthalpy for this reaction. (2)

Vanadium pentoxide is added as a catalyst in the above reaction.

| 5.3 | How w<br>Write<br>SAME       | ill the addition of the catalyst affect the following?<br>down only INCREASES, DECREASES or REMAIN THE                        |                    |
|-----|------------------------------|-------------------------------------------------------------------------------------------------------------------------------|--------------------|
|     | 5.3.1                        | Activation energy.                                                                                                            | (1)                |
|     | 5.3.2                        | Heat of reaction.                                                                                                             | (1)                |
| 5.4 | At 68 I                      | kJ·mol <sup>-1</sup> an activated complex is formed.                                                                          |                    |
|     | 5.4.1                        | Define the term activated complex.                                                                                            | (2)                |
|     | 5.4.2                        | Write down the activation energy for the reverse reaction.                                                                    | (2)                |
| 5.5 | Calcul<br>50 cm <sup>3</sup> | ate the volume of SO <sub>3</sub> gas formed in the container when ${}^{3}$ of SO <sub>2</sub> reacts completely with oxygen. | (2)<br><b>[12]</b> |

#### QUESTION 6 (Start on a new page.)

Nicotine, an alkaloid in the nightshade family of plants that is mainly responsible for the addictive nature of cigarettes, contains 74,02 % C, 8,71 % H and 17,27 % N.

| 6.3 | Determine the molecular formula of nicotine?                                     | (5)<br><b>[12]</b> |
|-----|----------------------------------------------------------------------------------|--------------------|
|     | It was found experimentally that 40,57 g of nicotine contains 0,25 mol nicotine. |                    |
| 6.2 | Determine the empirical formula of nicotine.                                     | (5)                |
| 6.1 | Define the term empirical formula.                                               | (2)                |

#### QUESTION 7 (Start on a new page.)

A 12 g sample of IMPURE solid calcium carbonate, CaCO<sub>3</sub>, reacted with 150 cm<sup>3</sup> of a 2 mol·dm<sup>-3</sup> excess hydrochloric acid, HC $\ell$ , according to the following balanced equation:

$$CaCO_3(s) + 2HC\ell(aq) \rightarrow CaC\ell_2(aq) + H_2O(\ell) + CO_2(g)$$

The graph below shows how the mass of CO<sub>2</sub> changes with time at STP.



#### **QUESTION 8 (Start on a new page.)**

| 8.1 | Define a Brønsted-Lowry base.                                                                                                                                         | (2)                |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| 8.2 | Calculate the pH of a 0,1 mol·dm <sup>-3</sup> of HCł                                                                                                                 | (3)                |
| 8.3 | Write down the FORMULA for the conjugate base of HCł.                                                                                                                 | (1)                |
| 8.4 | Why is HSO <sub>4</sub> regarded as an ampholyte?                                                                                                                     | (2)                |
| 8.5 | Write down a balanced chemical equation for the reaction of $HSO_4^-$ with water to form the hydronium ion.                                                           | (3)                |
| 8.6 | A solution of potassium hydroxide(KOH) is prepared by dissolving 7,9 of potassium hydroxide in 250 cm <sup>3</sup> of distilled water.                                | g                  |
|     | 8.6.1 Calculate the concentration of potassium hydroxide solution.                                                                                                    | (3)                |
|     | During titration 25 cm <sup>3</sup> of the above solution is neutralised by 40 cm <sup>3</sup> o a DILUTE sulphuric acid solution according to the balanced equation: | f                  |
|     | $H_2SO_4(aq) + 2KOH(aq) \rightarrow K_2SO_4(aq) + 2H_2O$                                                                                                              |                    |
|     | 8.6.2 Calculate the concentration of the DILUTE acid.                                                                                                                 | (4)                |
|     | The DILUTE acid in QUESTION 8.6.2 was prepared by adding 10 cm <sup>3</sup> of CONCENTRATED acid to 490 cm <sup>3</sup> distilled water.                              | i                  |
|     | 8.6.3 Calculate the concentration of the CONCENTRATED acid.                                                                                                           | (4)<br><b>[22]</b> |

#### QUESTION 9 (Start on a new page.)

A mixture containing Aluminium and Manganese oxide was heated to initiate the following redox reaction:

 $2A\ell+3MnO \rightarrow A\ell_2O_3+3Mn$ 

| 9.1 | Define              | the term <i>reduction</i> in terms of oxidation numbers.                                                | (2)                |
|-----|---------------------|---------------------------------------------------------------------------------------------------------|--------------------|
| 9.2 | Write o             | lown the oxidation numbers of the following substances:                                                 |                    |
|     | 9.2.1               | Mn in MnO                                                                                               | (1)                |
|     | 9.2.2               | Al in Al <sub>2</sub> O <sub>3</sub>                                                                    | (1)                |
| 9.3 | Identify<br>your ai | an oxidising agent in the above-mentioned reaction. Explain new swer by referring to oxidation numbers. | (3)                |
| 9.4 | Consic              | ler the following reaction:                                                                             |                    |
|     |                     | $H^+ + Cu + NO_3^- \rightarrow H_2O + Cu^{2+} + NO$                                                     |                    |
|     | Write o             | lown the:                                                                                               |                    |
|     | 9.4.1               | Oxidation half reaction.                                                                                | (2)                |
|     | 9.4.2               | Reduction half reaction.                                                                                | (2)                |
|     | 9.4.3               | Balanced net ionic equation.                                                                            | (4)<br><b>[15]</b> |

**TOTAL: 150** 

#### DATA FOR PHYSICAL SCIENCES GRADE 11

#### PAPER 2 (CHEMISTRY)

#### TABLE 1: PHYSICAL CONSTANTS

| NAME                    | SYMBOL         | VALUE                                     |
|-------------------------|----------------|-------------------------------------------|
| Standard pressure       | p <sup>θ</sup> | 1,013 × 10⁵ Pa                            |
| Molar gas volume at STP | Vm             | 22,4 dm <sup>3</sup> ·mol <sup>-1</sup>   |
| Standard temperature    | Tθ             | 273 K                                     |
| Charge on electron      | e              | -1,6 × 10 <sup>-19</sup> C                |
| Avogadro's constant     | NA             | 6,02 × 10 <sup>23</sup> mol <sup>-1</sup> |

#### TABLE 2: FORMULAE

| $n = \frac{m}{M}$ or   | $c = \frac{n}{v}$ or                        | pH= -log[H <sub>3</sub> O+]                                   |
|------------------------|---------------------------------------------|---------------------------------------------------------------|
| $n = \frac{N}{N_A}$ or | $c = \frac{m}{MV}$                          | K <sub>w =</sub> [H₃O⁺][OH⁻] = 1x10 <sup>-14</sup><br>at 298K |
| $n = \frac{V}{V_m}$    | $\frac{c_a V_a}{c_b V_b} = \frac{n_a}{n_b}$ |                                                               |

| TABLE 4A: STANDARD REDUCTION POTENTIA                                             |      |                                       |                    |  |  |
|-----------------------------------------------------------------------------------|------|---------------------------------------|--------------------|--|--|
| Half-reactions/Half                                                               | reak | sies                                  | E <sup>θ</sup> (V) |  |  |
| F <sub>2</sub> (g) + 2e <sup>-</sup>                                              | 1    | 2F⁻                                   | + 2,87             |  |  |
| Co <sup>3+</sup> + e <sup>-</sup>                                                 | ≠    | Co <sup>2+</sup>                      | + 1,81             |  |  |
| H <sub>2</sub> O <sub>2</sub> + 2H <sup>+</sup> +2e <sup>-</sup>                  | ⇒    | 2H <sub>2</sub> O                     | +1,77              |  |  |
| MnO _4 + 8H⁺ + 5e⁻                                                                | ≠    | Mn <sup>2+</sup> + 4H <sub>2</sub> O  | + 1,51             |  |  |
| Cℓ <sub>2</sub> (g) + 2e <sup>-</sup>                                             | #    | 2Cℓ <sup>_</sup>                      | + 1,36             |  |  |
| Cr <sub>2</sub> O <sub>7</sub> <sup>2-</sup> + 14H <sup>+</sup> + 6e <sup>-</sup> | ≠    | 2Cr <sup>3+</sup> + 7H <sub>2</sub> O | + 1,33             |  |  |
| O <sub>2</sub> (g) + 4H <sup>+</sup> + 4e <sup>-</sup>                            | #    | 2H <sub>2</sub> O                     | + 1,23             |  |  |
| MnO₂ + 4H⁺ + 2e⁻                                                                  | ≓    | Mn <sup>2+</sup> + 2H <sub>2</sub> O  | + 1,23             |  |  |
| Pt <sup>2+</sup> + 2e <sup>−</sup>                                                | ⇒    | Pt                                    | + 1,20             |  |  |
| $Br_2(\ell) + 2e^-$                                                               | ≠    | 2Br-                                  | + 1,07             |  |  |
| NO <sup>−</sup> <sub>3</sub> + 4H <sup>+</sup> + 3e <sup>-</sup>                  | ≠    | $NO(g) + 2H_2O$                       | + 0,96             |  |  |
| Hg²+ + 2e⁻                                                                        | #    | Hg(ℓ)                                 | + 0,85             |  |  |
| Ag⁺ + e⁻                                                                          | #    | Ag                                    | + 0,80             |  |  |
| NO <sup>−</sup> <sub>3</sub> + 2H <sup>+</sup> + e <sup>−</sup>                   | ≠    | $NO_2(g) + H_2O$                      | + 0,80             |  |  |
| Fe <sup>3+</sup> + e <sup>−</sup>                                                 | ⇒    | Fe <sup>2+</sup>                      | + 0,77             |  |  |
| O <sub>2</sub> (g) + 2H <sup>+</sup> + 2e <sup>-</sup>                            | ⇒    | $H_2O_2$                              | + 0,68             |  |  |
| l <sub>2</sub> + 2e <sup>−</sup>                                                  | ≓    | 2I <sup>_</sup>                       | + 0,54             |  |  |
| Cu⁺ + e⁻                                                                          | #    | Cu                                    | + 0,52             |  |  |
| SO <sub>2</sub> + 4H <sup>+</sup> + 4e <sup>-</sup>                               | #    | S + 2H <sub>2</sub> O                 | + 0,45             |  |  |
| 2H <sub>2</sub> O + O <sub>2</sub> + 4e <sup>-</sup>                              | ⇒    | 4OH <sup>_</sup>                      | + 0,40             |  |  |

#### LS

| vermoë      |
|-------------|
| oksiderende |
| Toenemende  |
| ability/    |
| oxidising   |
| Increasing  |

| MnO _4 + 8H⁺ + 5e⁻                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ≠                                       | Mn <sup>2+</sup> + 4H <sub>2</sub> O                                                                                                                                                 | + 1,51                                                                                                                                                                                                                                                         |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Cℓ <sub>2</sub> (g) + 2e <sup>-</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ≠                                       | 2Cℓ <sup>_</sup>                                                                                                                                                                     | + 1,36                                                                                                                                                                                                                                                         |
| Cr <sub>2</sub> O <sub>7</sub> <sup>2-</sup> + 14H⁺ + 6e <sup>-</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ≠                                       | 2Cr <sup>3+</sup> + 7H <sub>2</sub> O                                                                                                                                                | + 1,33                                                                                                                                                                                                                                                         |
| O <sub>2</sub> (g) + 4H <sup>+</sup> + 4e <sup>−</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ≠                                       | 2H <sub>2</sub> O                                                                                                                                                                    | + 1,23                                                                                                                                                                                                                                                         |
| MnO <sub>2</sub> + 4H <sup>+</sup> + 2e <sup>−</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ≠                                       | Mn <sup>2+</sup> + 2H <sub>2</sub> O                                                                                                                                                 | + 1,23                                                                                                                                                                                                                                                         |
| Pt <sup>2+</sup> + 2e⁻                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ≠                                       | Pt                                                                                                                                                                                   | + 1,20                                                                                                                                                                                                                                                         |
| Br <sub>2</sub> (ℓ) + 2e <sup>-</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ⇒                                       | 2Br⁻                                                                                                                                                                                 | + 1,07                                                                                                                                                                                                                                                         |
| NO <sup>−</sup> <sub>3</sub> + 4H <sup>+</sup> + 3e <sup>−</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ⇒                                       | $NO(g) + 2H_2O$                                                                                                                                                                      | + 0,96                                                                                                                                                                                                                                                         |
| Hg²+ + 2e⁻                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | #                                       | Hg(ℓ)                                                                                                                                                                                | + 0,85                                                                                                                                                                                                                                                         |
| Ag⁺ + e⁻                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ≠                                       | Ag                                                                                                                                                                                   | + 0,80                                                                                                                                                                                                                                                         |
| NO <sup>-</sup> <sub>3</sub> + 2H⁺ + e⁻                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ≠                                       | $NO_2(g) + H_2O$                                                                                                                                                                     | + 0,80                                                                                                                                                                                                                                                         |
| Fe <sup>3+</sup> + e⁻                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ≠                                       | Fe <sup>2+</sup>                                                                                                                                                                     | + 0,77                                                                                                                                                                                                                                                         |
| O <sub>2</sub> (g) + 2H <sup>+</sup> + 2e <sup>−</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ≠                                       | $H_2O_2$                                                                                                                                                                             | + 0,68                                                                                                                                                                                                                                                         |
| l <sub>2</sub> + 2e <sup>-</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ≠                                       | 2I <sup>_</sup>                                                                                                                                                                      | + 0,54                                                                                                                                                                                                                                                         |
| Cu⁺ + e⁻                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ≠                                       | Cu                                                                                                                                                                                   | + 0,52                                                                                                                                                                                                                                                         |
| SO <sub>2</sub> + 4H <sup>+</sup> + 4e <sup>-</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ≓                                       | S + 2H <sub>2</sub> O                                                                                                                                                                | + 0,45                                                                                                                                                                                                                                                         |
| 2H <sub>2</sub> O + O <sub>2</sub> + 4e <sup>-</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ≠                                       | 4OH⁻                                                                                                                                                                                 | + 0,40                                                                                                                                                                                                                                                         |
| Cu <sup>2+</sup> + 2e <sup>-</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ⇒                                       | Cu                                                                                                                                                                                   | + 0,34                                                                                                                                                                                                                                                         |
| SO <sub>4</sub> <sup>2-</sup> + 4H <sup>+</sup> + 2e <sup>-</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ≠                                       | SO <sub>2</sub> (g) + 2H <sub>2</sub> O                                                                                                                                              | + 0,17                                                                                                                                                                                                                                                         |
| Cu <sup>2+</sup> + e <sup>-</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | #                                       | Cu⁺                                                                                                                                                                                  | + 0,16                                                                                                                                                                                                                                                         |
| Sn <sup>4+</sup> + 2e⁻                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | #                                       | Sn <sup>2+</sup>                                                                                                                                                                     | + 0,15                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                         |                                                                                                                                                                                      |                                                                                                                                                                                                                                                                |
| S + 2H⁺ + 2e⁻                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ≠                                       | H <sub>2</sub> S(g)                                                                                                                                                                  | + 0,14                                                                                                                                                                                                                                                         |
| S + 2H⁺ + 2e⁻<br><b>2H⁺ + 2e</b> ⁻                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ‡<br><b>‡</b>                           | H₂S(g)<br><b>H₂(g)</b>                                                                                                                                                               | + 0,14<br><b>0,00</b>                                                                                                                                                                                                                                          |
| S + 2H⁺ + 2e <sup>-</sup><br><b>2H⁺ + 2e<sup>-</sup></b><br>Fe <sup>3+</sup> + 3e <sup>-</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 11 <b>1</b> 1 11                        | H <sub>2</sub> S(g)<br><b>H<sub>2</sub>(g)</b><br>Fe                                                                                                                                 | + 0,14<br><b>0,00</b><br>- 0,06                                                                                                                                                                                                                                |
| S + 2H <sup>+</sup> + 2e <sup>-</sup><br>2H <sup>+</sup> + 2e <sup>-</sup><br>Fe <sup>3+</sup> + 3e <sup>-</sup><br>Pb <sup>2+</sup> + 2e <sup>-</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 11 11 11                                | H₂S(g)<br><b>H₂(g)</b><br>Fe<br>Pb                                                                                                                                                   | + 0,14<br><b>0,00</b><br>- 0,06<br>- 0,13                                                                                                                                                                                                                      |
| $S + 2H^+ + 2e^-$<br>$2H^+ + 2e^-$<br>$Fe^{3+} + 3e^-$<br>$Pb^{2+} + 2e^-$<br>$Sn^{2+} + 2e^-$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 11 11 11 11 11                          | H₂S(g)<br><b>H₂(g)</b><br>Fe<br>Pb<br>Sn                                                                                                                                             | + 0,14<br><b>0,00</b><br>- 0,06<br>- 0,13<br>- 0,14                                                                                                                                                                                                            |
| $S + 2H^+ + 2e^-$<br>$2H^+ + 2e^-$<br>$Fe^{3^+} + 3e^-$<br>$Pb^{2^+} + 2e^-$<br>$Sn^{2^+} + 2e^-$<br>$Ni^{2^+} + 2e^-$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 11 11 11 11 11                          | H₂S(g)<br>H₂ <b>(g)</b><br>Fe<br>Pb<br>Sn<br>Ni                                                                                                                                      | + 0,14<br><b>0,00</b><br>- 0,06<br>- 0,13<br>- 0,14<br>- 0,27                                                                                                                                                                                                  |
| $S + 2H^+ + 2e^-$<br>$2H^+ + 2e^-$<br>$Fe^{3+} + 3e^-$<br>$Pb^{2+} + 2e^-$<br>$Sn^{2+} + 2e^-$<br>$Ni^{2+} + 2e^-$<br>$Co^{2+} + 2e^-$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 11 11 11 11 11 11 11                    | H₂S(g)<br>H₂(g)<br>Fe<br>Pb<br>Sn<br>Ni<br>Co                                                                                                                                        | + 0,14<br><b>0,00</b><br>- 0,06<br>- 0,13<br>- 0,14<br>- 0,27<br>- 0,28                                                                                                                                                                                        |
| $S + 2H^+ + 2e^-$<br>$2H^+ + 2e^-$<br>$Fe^{3+} + 3e^-$<br>$Pb^{2+} + 2e^-$<br>$Sn^{2+} + 2e^-$<br>$Ni^{2+} + 2e^-$<br>$Co^{2+} + 2e^-$<br>$Cd^{2+} + 2e^-$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 1 1 1 1 1 1 1 1                       | H₂S(g)<br>H₂(g)<br>Fe<br>Pb<br>Sn<br>Ni<br>Co<br>Cd                                                                                                                                  | + 0,14<br><b>0,00</b><br>- 0,06<br>- 0,13<br>- 0,14<br>- 0,27<br>- 0,28<br>- 0,40                                                                                                                                                                              |
| $S + 2H^+ + 2e^-$<br>$2H^+ + 2e^-$<br>$Fe^{3^+} + 3e^-$<br>$Pb^{2^+} + 2e^-$<br>$Sn^{2^+} + 2e^-$<br>$Ni^{2^+} + 2e^-$<br>$Co^{2^+} + 2e^-$<br>$Cd^{2^+} + 2e^-$<br>$Cr^{3^+} + e^-$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1 1 1 1 1 1 1 1 1 1                     | H₂S(g)<br>H₂(g)<br>Fe<br>Pb<br>Sn<br>Ni<br>Co<br>Cd<br>Cd                                                                                                                            | + 0,14<br><b>0,00</b><br>- 0,06<br>- 0,13<br>- 0,14<br>- 0,27<br>- 0,28<br>- 0,40<br>- 0,41                                                                                                                                                                    |
| $S + 2H^+ + 2e^-$<br>$2H^+ + 2e^-$<br>$Fe^{3^+} + 3e^-$<br>$Pb^{2^+} + 2e^-$<br>$Sn^{2^+} + 2e^-$<br>$Ni^{2^+} + 2e^-$<br>$Co^{2^+} + 2e^-$<br>$Cd^{2^+} + 2e^-$<br>$Cr^{3^+} + e^-$<br>$Fe^{2^+} + 2e^-$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1 1 1 1 1 1 1 1 1 1 1                   | $H_2S(g)$<br>$H_2(g)$<br>Fe<br>Pb<br>Sn<br>Ni<br>Co<br>Cd<br>$Cr^{2+}$<br>Fe                                                                                                         | + 0,14<br><b>0,00</b><br>- 0,06<br>- 0,13<br>- 0,14<br>- 0,27<br>- 0,28<br>- 0,40<br>- 0,41<br>- 0,44                                                                                                                                                          |
| $S + 2H^+ + 2e^-$<br>$2H^+ + 2e^-$<br>$Fe^{3+} + 3e^-$<br>$Pb^{2+} + 2e^-$<br>$Sn^{2+} + 2e^-$<br>$Ci^{2+} + 2e^-$<br>$Cd^{2+} + 2e^-$<br>$Cd^{2+} + 2e^-$<br>$Cr^{3+} + e^-$<br>$Fe^{2+} + 2e^-$<br>$Cr^{3+} + 3e^-$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1 1 1 1 1 1 1 1 1 1 1 1                 | $H_2S(g)$<br>$H_2(g)$<br>Fe<br>Pb<br>Sn<br>Ni<br>Co<br>Cd<br>$Cr^{2+}$<br>Fe<br>Cr                                                                                                   | + 0,14<br><b>0,00</b><br>- 0,06<br>- 0,13<br>- 0,14<br>- 0,27<br>- 0,28<br>- 0,40<br>- 0,41<br>- 0,44<br>- 0,74                                                                                                                                                |
| $S + 2H^+ + 2e^-$<br>$2H^+ + 2e^-$<br>$Fe^{3+} + 3e^-$<br>$Pb^{2+} + 2e^-$<br>$Sn^{2+} + 2e^-$<br>$Ci^{2+} + 2e^-$<br>$Cd^{2+} + 2e^-$<br>$Cr^{3+} + e^-$<br>$Fe^{2+} + 2e^-$<br>$Cr^{3+} + 3e^-$<br>$Zn^{2+} + 2e^-$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1 1 1 1 1 1 1 1 1 1 1 1 1               | $H_2S(g)$<br>$H_2(g)$<br>Fe<br>Pb<br>Sn<br>Ni<br>Co<br>Cd<br>$Cr^{2+}$<br>Fe<br>Cr<br>Zn                                                                                             | + 0,14<br><b>0,00</b><br>- 0,06<br>- 0,13<br>- 0,14<br>- 0,27<br>- 0,28<br>- 0,40<br>- 0,41<br>- 0,44<br>- 0,74<br>- 0,76                                                                                                                                      |
| $S + 2H^+ + 2e^-$<br>$2H^+ + 2e^-$<br>$Fe^{3^+} + 3e^-$<br>$Pb^{2^+} + 2e^-$<br>$Sn^{2^+} + 2e^-$<br>$Co^{2^+} + 2e^-$<br>$Cd^{2^+} + 2e^-$<br>$Cd^{2^+} + 2e^-$<br>$Cr^{3^+} + e^-$<br>$Fe^{2^+} + 2e^-$<br>$Cr^{3^+} + 3e^-$<br>$Zn^{2^+} + 2e^-$<br>$2H_2O + 2e^-$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1         | $H_2S(g)$<br>$H_2(g)$<br>Fe<br>Pb<br>Sn<br>Ni<br>Co<br>Cd<br>$Cr^{2+}$<br>Fe<br>Cr<br>Zn<br>$H_2(g) + 2OH^-$                                                                         | + 0,14<br><b>0,00</b><br>- 0,06<br>- 0,13<br>- 0,14<br>- 0,27<br>- 0,28<br>- 0,40<br>- 0,41<br>- 0,44<br>- 0,74<br>- 0,76<br>- 0,83                                                                                                                            |
| $\begin{array}{l} S+2H^{+}+2e^{-}\\ 2H^{+}+2e^{-}\\ Fe^{3+}+3e^{-}\\ Pb^{2+}+2e^{-}\\ Sn^{2+}+2e^{-}\\ Ci^{2+}+2e^{-}\\ Co^{2+}+2e^{-}\\ Cd^{2+}+2e^{-}\\ Cr^{3+}+e^{-}\\ Fe^{2+}+2e^{-}\\ Cr^{3+}+3e^{-}\\ Zn^{2+}+2e^{-}\\ 2H_{2}O+2e^{-}\\ Cr^{2+}+2e^{-}\\ Cr^{2+}+$ | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1       | $H_2S(g)$<br>$H_2(g)$<br>Fe<br>Pb<br>Sn<br>Ni<br>Co<br>Cd<br>$Cr^{2+}$<br>Fe<br>Cr<br>Zn<br>$H_2(g) + 2OH^-$<br>Cr                                                                   | + 0,14<br><b>0,00</b><br>- 0,06<br>- 0,13<br>- 0,14<br>- 0,27<br>- 0,28<br>- 0,40<br>- 0,41<br>- 0,44<br>- 0,74<br>- 0,76<br>- 0,83<br>- 0,91                                                                                                                  |
| $\begin{array}{l} S+2H^{+}+2e^{-}\\ 2H^{+}+2e^{-}\\ Fe^{3+}+3e^{-}\\ Pb^{2+}+2e^{-}\\ Sn^{2+}+2e^{-}\\ Cn^{2+}+2e^{-}\\ Cd^{2+}+2e^{-}\\ Cd^{2+}+2e^{-}\\ Cr^{3+}+e^{-}\\ Fe^{2+}+2e^{-}\\ Cr^{3+}+3e^{-}\\ Zn^{2+}+2e^{-}\\ 2H_{2}O+2e^{-}\\ Cr^{2+}+2e^{-}\\ Mn^{2+}+2e^{-}\\ Mn^{2+}+2e^{-}\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1   | $H_2S(g)$<br>$H_2(g)$<br>Fe<br>Pb<br>Sn<br>Ni<br>Co<br>Cd<br>$Cr^{2+}$<br>Fe<br>Cr<br>Zn<br>$H_2(g) + 2OH^-$<br>Cr<br>Mn                                                             | + 0,14<br><b>0,00</b><br>- 0,06<br>- 0,13<br>- 0,14<br>- 0,27<br>- 0,28<br>- 0,40<br>- 0,41<br>- 0,44<br>- 0,74<br>- 0,76<br>- 0,83<br>- 0,91<br>- 1,18                                                                                                        |
| $\begin{array}{l} S+2H^{+}+2e^{-} \\ 2H^{+}+2e^{-} \\ Fe^{3+}+3e^{-} \\ Pb^{2+}+2e^{-} \\ Sn^{2+}+2e^{-} \\ Ni^{2+}+2e^{-} \\ Co^{2+}+2e^{-} \\ Cd^{2+}+2e^{-} \\ Cd^{2+}+2e^{-} \\ Cr^{3+}+e^{-} \\ Fe^{2+}+2e^{-} \\ Cr^{3+}+3e^{-} \\ Zn^{2+}+2e^{-} \\ 2H_{2}O+2e^{-} \\ Cr^{2+}+2e^{-} \\ Mn^{2+}+2e^{-} \\ At^{3+}+3e^{-} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | $H_2S(g)$<br>$H_2(g)$<br>Fe<br>Pb<br>Sn<br>Ni<br>Co<br>Cd<br>$Cr^{2+}$<br>Fe<br>Cr<br>Zn<br>$H_2(g) + 2OH^-$<br>Cr<br>Mn<br>A $\ell$                                                 | $\begin{array}{r} + 0,14 \\ \textbf{0,00} \\ - 0,06 \\ - 0,13 \\ - 0,14 \\ - 0,27 \\ - 0,28 \\ - 0,40 \\ - 0,41 \\ - 0,44 \\ - 0,74 \\ - 0,76 \\ - 0,83 \\ - 0,91 \\ - 1,18 \\ - 1,66 \end{array}$                                                             |
| $\begin{array}{l} S+2H^{+}+2e^{-}\\ 2H^{+}+2e^{-}\\ Fe^{3+}+3e^{-}\\ Pb^{2+}+2e^{-}\\ Sn^{2+}+2e^{-}\\ Sn^{2+}+2e^{-}\\ Co^{2+}+2e^{-}\\ Cd^{2+}+2e^{-}\\ Cd^{2+}+2e^{-}\\ Cr^{3+}+e^{-}\\ Fe^{2+}+2e^{-}\\ Cr^{3+}+3e^{-}\\ Zn^{2+}+2e^{-}\\ 2H_{2}O+2e^{-}\\ Cr^{2+}+2e^{-}\\ Mn^{2+}+2e^{-}\\ A\ell^{3+}+3e^{-}\\ Mg^{2+}+2e^{-}\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | $H_2S(g)$<br>$H_2(g)$<br>Fe<br>Pb<br>Sn<br>Ni<br>Co<br>Cd<br>Cr <sup>2+</sup><br>Fe<br>Cr<br>Zn<br>$H_2(g) + 2OH^-$<br>Cr<br>Mn<br>A $\ell$<br>Mg                                    | $\begin{array}{r} + 0,14 \\ 0,00 \\ - 0,06 \\ - 0,13 \\ - 0,14 \\ - 0,27 \\ - 0,28 \\ - 0,40 \\ - 0,41 \\ - 0,44 \\ - 0,74 \\ - 0,76 \\ - 0,83 \\ - 0,91 \\ - 1,18 \\ - 1,66 \\ - 2,36 \end{array}$                                                            |
| $\begin{array}{l} S+2H^{+}+2e^{-} \\ 2H^{+}+2e^{-} \\ Fe^{3+}+3e^{-} \\ Pb^{2+}+2e^{-} \\ Sn^{2+}+2e^{-} \\ Ni^{2+}+2e^{-} \\ Co^{2+}+2e^{-} \\ Cd^{2+}+2e^{-} \\ Cd^{2+}+2e^{-} \\ Cr^{3+}+e^{-} \\ Fe^{2+}+2e^{-} \\ Cr^{3+}+3e^{-} \\ Zn^{2+}+2e^{-} \\ 2H_2O+2e^{-} \\ Cr^{2+}+2e^{-} \\ Mn^{2+}+2e^{-} \\ Al^{3+}+3e^{-} \\ Mg^{2+}+2e^{-} \\ Na^{+}+e^{-} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | $H_2S(g)$<br>$H_2(g)$<br>Fe<br>Pb<br>Sn<br>Ni<br>Co<br>Cd<br>Cr <sup>2+</sup><br>Fe<br>Cr<br>Zn<br>$H_2(g) + 2OH^-$<br>Cr<br>Mn<br>A $\ell$<br>Mg<br>Na                              | $\begin{array}{r} + 0,14 \\ 0,00 \\ - 0,06 \\ - 0,13 \\ - 0,27 \\ - 0,28 \\ - 0,40 \\ - 0,41 \\ - 0,44 \\ - 0,74 \\ - 0,76 \\ - 0,83 \\ - 0,91 \\ - 1,18 \\ - 1,66 \\ - 2,36 \\ - 2,71 \end{array}$                                                            |
| $\begin{array}{l} S+2H^{+}+2e^{-} \\ \\ \mathbf{2H^{+}+2e^{-}} \\ Fe^{3+}+3e^{-} \\ Pb^{2+}+2e^{-} \\ Sn^{2+}+2e^{-} \\ Cn^{2+}+2e^{-} \\ Cd^{2+}+2e^{-} \\ Cd^{2+}+2e^{-} \\ Cd^{2+}+2e^{-} \\ Cr^{3+}+e^{-} \\ Fe^{2+}+2e^{-} \\ Cr^{3+}+3e^{-} \\ 2H_{2}O+2e^{-} \\ Cr^{2+}+2e^{-} \\ Mn^{2+}+2e^{-} \\ Al^{3+}+3e^{-} \\ Mg^{2+}+2e^{-} \\ Na^{+}+e^{-} \\ Ca^{2+}+2e^{-} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | $H_2S(g)$<br>$H_2(g)$<br>Fe<br>Pb<br>Sn<br>Ni<br>Co<br>Cd<br>Cr <sup>2+</sup><br>Fe<br>Cr<br>Zn<br>$H_2(g) + 2OH^-$<br>Cr<br>Mn<br>A $\ell$<br>Mg<br>Na<br>Ca                        | $\begin{array}{r} + 0,14 \\ 0,00 \\ - 0,06 \\ - 0,13 \\ - 0,27 \\ - 0,28 \\ - 0,40 \\ - 0,41 \\ - 0,44 \\ - 0,74 \\ - 0,76 \\ - 0,83 \\ - 0,91 \\ - 1,18 \\ - 1,66 \\ - 2,36 \\ - 2,71 \\ - 2,87 \end{array}$                                                  |
| $\begin{array}{l} S+2H^{+}+2e^{-} \\ \\ \textbf{2H^{+}+2e^{-}} \\ Fe^{3+}+3e^{-} \\ Pb^{2+}+2e^{-} \\ Sn^{2+}+2e^{-} \\ Sn^{2+}+2e^{-} \\ Co^{2+}+2e^{-} \\ Cd^{2+}+2e^{-} \\ Cd^{2+}+2e^{-} \\ Cr^{3+}+e^{-} \\ Fe^{2+}+2e^{-} \\ Cr^{3+}+3e^{-} \\ Zn^{2+}+2e^{-} \\ 2H_{2}O+2e^{-} \\ Cr^{2+}+2e^{-} \\ Mn^{2+}+2e^{-} \\ Al^{3+}+3e^{-} \\ Mg^{2+}+2e^{-} \\ Na^{+}+e^{-} \\ Ca^{2+}+2e^{-} \\ Sr^{2+}+2e^{-} \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | $H_2S(g)$<br>$F_2(g)$<br>Fe<br>Pb<br>Sn<br>Ni<br>Co<br>Cd<br>$Cr^{2+}$<br>Fe<br>Cr<br>Zn<br>$H_2(g) + 2OH^-$<br>Cr<br>Mn<br>$A\ell$<br>Mg<br>Na<br>Ca<br>Sr                          | $\begin{array}{r} + 0,14 \\ \textbf{0,00} \\ - 0,06 \\ - 0,13 \\ - 0,14 \\ - 0,27 \\ - 0,28 \\ - 0,40 \\ - 0,44 \\ - 0,44 \\ - 0,74 \\ - 0,76 \\ - 0,83 \\ - 0,91 \\ - 1,18 \\ - 1,66 \\ - 2,36 \\ - 2,71 \\ - 2,87 \\ - 2,89 \end{array}$                     |
| $S + 2H^+ + 2e^-$<br>$Pb^{2+} + 2e^-$<br>$Sn^{2+} + 2e^-$<br>$Sn^{2+} + 2e^-$<br>$Sn^{2+} + 2e^-$<br>$Co^{2+} + 2e^-$<br>$Co^{2+} + 2e^-$<br>$Cd^{2+} + 2e^-$<br>$Cr^{3+} + e^-$<br>$Fe^{2+} + 2e^-$<br>$Cr^{3+} + 3e^-$<br>$Zn^{2+} + 2e^-$<br>$2H_2O + 2e^-$<br>$Cr^{2+} + 2e^-$<br>$Mn^{2+} + 2e^-$<br>$Mn^{2+} + 2e^-$<br>$Na^+ + e^-$<br>$Ca^{2+} + 2e^-$<br>$Sn^{2+} + 2e^-$<br>$Ba^{2+} + 2e^-$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                         | $H_2S(g)$<br>$F_2(g)$<br>Fe<br>Pb<br>Sn<br>Ni<br>Co<br>Cd<br>$Cr^{2+}$<br>Fe<br>Cr<br>Zn<br>$H_2(g) + 2OH^-$<br>Cr<br>Mn<br>A $\ell$<br>Mg<br>Na<br>Ca<br>Sr<br>Ba                   | $\begin{array}{r} + 0,14 \\ \textbf{0,00} \\ - 0,06 \\ - 0,13 \\ - 0,14 \\ - 0,27 \\ - 0,28 \\ - 0,40 \\ - 0,41 \\ - 0,44 \\ - 0,74 \\ - 0,74 \\ - 0,76 \\ - 0,83 \\ - 0,91 \\ - 1,18 \\ - 1,66 \\ - 2,36 \\ - 2,71 \\ - 2,87 \\ - 2,89 \\ - 2,90 \end{array}$ |
| $\begin{array}{l} S+2H^{+}+2e^{-} \\ \mathbf{2H^{+}+2e^{-}} \\ Fe^{3+}+3e^{-} \\ Pb^{2+}+2e^{-} \\ Sn^{2+}+2e^{-} \\ Sn^{2+}+2e^{-} \\ Co^{2+}+2e^{-} \\ Cd^{2+}+2e^{-} \\ Cd^{2+}+2e^{-} \\ Cr^{3+}+e^{-} \\ Fe^{2+}+2e^{-} \\ Cr^{3+}+3e^{-} \\ Zn^{2+}+2e^{-} \\ 2H_2O+2e^{-} \\ Cr^{2+}+2e^{-} \\ Al^{3+}+3e^{-} \\ Mg^{2+}+2e^{-} \\ Al^{3+}+3e^{-} \\ Mg^{2+}+2e^{-} \\ Sn^{2+}+2e^{-} \\$  | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | $H_2S(g)$<br>$F_2(g)$<br>Fe<br>Pb<br>Sn<br>Ni<br>Co<br>Cd<br>$Cr^{2+}$<br>Fe<br>Cr<br>Zn<br>$H_2(g) + 2OH^-$<br>Cr<br>Mn<br>$A\ell$<br>Mg<br>Na<br>Ca<br>Sr<br>Ba<br>Cs              | + 0,14<br><b>0,00</b><br>- 0,06<br>- 0,13<br>- 0,14<br>- 0,27<br>- 0,28<br>- 0,40<br>- 0,41<br>- 0,44<br>- 0,74<br>- 0,76<br>- 0,83<br>- 0,91<br>- 1,18<br>- 1,66<br>- 2,36<br>- 2,71<br>- 2,87<br>- 2,89<br>- 2,90<br>- 2,92                                  |
| $S + 2H^+ + 2e^-$<br>$Pb^{2+} + 2e^-$<br>$Fe^{3+} + 3e^-$<br>$Pb^{2+} + 2e^-$<br>$Sn^{2+} + 2e^-$<br>$Co^{2+} + 2e^-$<br>$Cd^{2+} + 2e^-$<br>$Cd^{2+} + 2e^-$<br>$Cr^{3+} + e^-$<br>$Fe^{2+} + 2e^-$<br>$Cr^{3+} + 3e^-$<br>$Zn^{2+} + 2e^-$<br>$2H_2O + 2e^-$<br>$Cr^{2+} + 2e^-$<br>$Mn^{2+} + 2e^-$<br>$Al^{3+} + 3e^-$<br>$Mg^{2+} + 2e^-$<br>$Na^+ + e^-$<br>$Ca^{2+} + 2e^-$<br>$Sr^{2+} + 2e^-$<br>$Ba^{2+} + 2e^-$<br>$Sr^{2+} + 2e^-$<br>$Cs^+ + e^-$<br>$K^+ + e^-$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                         | $H_2S(g)$<br>$F_2(g)$<br>Fe<br>Pb<br>Sn<br>Ni<br>Co<br>Cd<br>Cr <sup>2+</sup><br>Fe<br>Cr<br>Zn<br>$H_2(g) + 2OH^-$<br>Cr<br>Mn<br>A $\ell$<br>Mg<br>Na<br>Ca<br>Sr<br>Ba<br>Cs<br>K | + 0,14<br><b>0,00</b><br>- 0,06<br>- 0,13<br>- 0,14<br>- 0,27<br>- 0,28<br>- 0,40<br>- 0,41<br>- 0,44<br>- 0,74<br>- 0,76<br>- 0,83<br>- 0,91<br>- 1,18<br>- 1,66<br>- 2,36<br>- 2,71<br>- 2,87<br>- 2,89<br>- 2,90<br>- 2,92<br>- 2,93                        |
| $S + 2H^+ + 2e^-$<br>$Pb^{2+} + 2e^-$<br>$Fe^{3+} + 3e^-$<br>$Pb^{2^+} + 2e^-$<br>$Sn^{2^+} + 2e^-$<br>$Co^{2^+} + 2e^-$<br>$Cd^{2^+} + 2e^-$<br>$Cd^{2^+} + 2e^-$<br>$Cr^{3^+} + e^-$<br>$Fe^{2^+} + 2e^-$<br>$Cr^{3^+} + 3e^-$<br>$Zn^{2^+} + 2e^-$<br>$Cr^{2^+} + 2e^-$<br>$At^{3^+} + 3e^-$<br>$Mg^{2^+} + 2e^-$<br>$At^{3^+} + 3e^-$<br>$Mg^{2^+} + 2e^-$<br>$Sr^{2^+} + 2e^-$<br>$Sr^{2^+} + 2e^-$<br>$Sr^{2^+} + 2e^-$<br>$Sr^{2^+} + 2e^-$<br>$Cs^+ + e^-$<br>$K^+ + e^-$<br>$Li^+ + e^-$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                         | $H_2S(g)$<br>$F_2(g)$<br>Fe<br>Pb<br>Sn<br>Ni<br>Co<br>Cd<br>$Cr^{2+}$<br>Fe<br>Cr<br>Zn<br>$H_2(g) + 2OH^-$<br>Cr<br>Mn<br>Al<br>Mg<br>Na<br>Ca<br>Sr<br>Ba<br>Cs<br>K<br>Li        | + 0,14<br><b>0,00</b><br>- 0,06<br>- 0,13<br>- 0,14<br>- 0,27<br>- 0,28<br>- 0,40<br>- 0,41<br>- 0,44<br>- 0,74<br>- 0,74<br>- 0,76<br>- 0,83<br>- 0,91<br>- 1,18<br>- 1,66<br>- 2,36<br>- 2,71<br>- 2,87<br>- 2,89<br>- 2,90<br>- 2,92<br>- 2,93<br>- 3,05    |

Increasing reducing ability/Toenemende reduserende vermoë

| Half-reactions/Ha                                                                 | Ε <sup>θ</sup> (V)   |                                         |        |
|-----------------------------------------------------------------------------------|----------------------|-----------------------------------------|--------|
| Li⁺ + e⁻                                                                          | #                    | Li                                      | - 3,05 |
| K⁺ + e⁻                                                                           | ⇒                    | К                                       | - 2,93 |
| Cs⁺ + e⁻                                                                          | ⇒                    | Cs                                      | - 2,92 |
| Ba²+ + 2e⁻                                                                        | ⇒                    | Ва                                      | - 2,90 |
| Sr <sup>2+</sup> + 2e <sup>-</sup>                                                | ⇒                    | Sr                                      | - 2,89 |
| Ca²+ + 2e⁻                                                                        | ⇒                    | Ca                                      | - 2,87 |
| Na⁺ + e⁻                                                                          | $\Rightarrow$        | Na                                      | - 2,71 |
| Mg²+ + 2e⁻                                                                        | $\Rightarrow$        | Mg                                      | - 2,36 |
| Aℓ <sup>3+</sup> + 3e <sup>-</sup>                                                | ⇒                    | Ał                                      | - 1,66 |
| Mn <sup>2+</sup> + 2e <sup>-</sup>                                                | ⇒                    | Mn                                      | - 1,18 |
| Cr <sup>2+</sup> + 2e <sup>-</sup>                                                | ⇒                    | Cr                                      | - 0,91 |
| 2H <sub>2</sub> O + 2e <sup>-</sup>                                               | $\rightleftharpoons$ | H₂(g) + 2OH⁻                            | - 0,83 |
| Zn <sup>2+</sup> + 2e <sup>-</sup>                                                | ⇒                    | Zn                                      | - 0,76 |
| Cr <sup>3+</sup> + 3e <sup>-</sup>                                                | $\Rightarrow$        | Cr                                      | - 0,74 |
| Fe <sup>2+</sup> + 2e <sup>-</sup>                                                | ⇒                    | Fe                                      | - 0,44 |
| Cr <sup>3+</sup> + e <sup>−</sup>                                                 | ⇒                    | Cr <sup>2+</sup>                        | - 0,41 |
| Cd <sup>2+</sup> + 2e <sup>-</sup>                                                | ⇒                    | Cd                                      | - 0,40 |
| Co <sup>2+</sup> + 2e <sup>-</sup>                                                | $\Rightarrow$        | Co                                      | - 0,28 |
| Ni <sup>2+</sup> + 2e <sup>-</sup>                                                | $\Rightarrow$        | Ni                                      | - 0,27 |
| Sn²+ + 2e⁻                                                                        | $\Rightarrow$        | Sn                                      | - 0,14 |
| Pb <sup>2+</sup> + 2e <sup>-</sup>                                                | ⇒                    | Pb                                      | - 0,13 |
| Fe <sup>3+</sup> + 3e <sup>-</sup>                                                | ⇒                    | Fe                                      | - 0,06 |
| 2H⁺ + 2e⁻                                                                         | ⇒                    | H <sub>2</sub> (g)                      | 0,00   |
| S + 2H⁺ + 2e⁻                                                                     | ⇒                    | $H_2S(g)$                               | + 0,14 |
| Sn <sup>4+</sup> + 2e⁻                                                            | ⇒                    | Sn <sup>2+</sup>                        | + 0,15 |
| Cu <sup>2+</sup> + e <sup>-</sup>                                                 | ⇒                    | Cu⁺                                     | + 0,16 |
| SO <sub>4</sub> <sup>2−</sup> + 4H⁺ + 2e⁻                                         | ≠                    | SO <sub>2</sub> (g) + 2H <sub>2</sub> O | + 0,17 |
| Cu <sup>2+</sup> + 2e <sup>-</sup>                                                | ⇒                    | Cu                                      | + 0,34 |
| 2H <sub>2</sub> O + O <sub>2</sub> + 4e <sup>-</sup>                              | $\Rightarrow$        | 4OH⁻                                    | + 0,40 |
| SO <sub>2</sub> + 4H <sup>+</sup> + 4e <sup>-</sup>                               | $\Rightarrow$        | S + 2H <sub>2</sub> O                   | + 0,45 |
| Cu⁺ + e⁻                                                                          | $\Rightarrow$        | Cu                                      | + 0,52 |
| I <sub>2</sub> + 2e <sup>-</sup>                                                  | $\Rightarrow$        | 2I <sup>_</sup>                         | + 0,54 |
| O <sub>2</sub> (g) + 2H <sup>+</sup> + 2e <sup>-</sup>                            | $\Rightarrow$        | $H_2O_2$                                | + 0,68 |
| Fe <sup>3+</sup> + e <sup>-</sup>                                                 | ⇒                    | Fe <sup>2+</sup>                        | + 0,77 |
| NO 3 + 2H⁺ + e⁻                                                                   | ≠                    | $NO_2(g) + H_2O$                        | + 0,80 |
| Ag⁺ + e⁻                                                                          | ⇒                    | Ag                                      | + 0,80 |
| Hg²+ + 2e⁻                                                                        | ≠                    | Hg(ℓ)                                   | + 0,85 |
| NO <sup>-</sup> <sub>3</sub> + 4H⁺ + 3e⁻                                          | ⇒                    | NO(g) + 2H <sub>2</sub> O               | + 0,96 |
| Br₂(ℓ) + 2e <sup>-</sup>                                                          | ⇒                    | 2Br⁻                                    | + 1,07 |
| Pt <sup>2+</sup> + 2 e⁻                                                           | ⇒                    | Pt                                      | + 1,20 |
| MnO₂+ 4H⁺ + 2e⁻                                                                   | ⇒                    | Mn <sup>2+</sup> + 2H <sub>2</sub> O    | + 1,23 |
| O <sub>2</sub> (g) + 4H⁺ + 4e⁻<br>2_                                              | ≠                    | 2H <sub>2</sub> O                       | + 1,23 |
| Cr <sub>2</sub> O <sub>7</sub> <sup>2−</sup> + 14H <sup>+</sup> + 6e <sup>−</sup> | ≠                    | 2Cr <sup>3+</sup> + 7H <sub>2</sub> O   | + 1,33 |
| Cℓ <sub>2</sub> (g) + 2e <sup>-</sup>                                             | ≠                    | 2C <i>ł</i> ⁻                           | + 1,36 |
| MnO <sup>−</sup> <sub>4</sub> + 8H⁺ + 5e⁻                                         | ≠                    | Mn <sup>2+</sup> + 4H <sub>2</sub> O    | + 1,51 |
| H <sub>2</sub> O <sub>2</sub> + 2H <sup>+</sup> +2 e <sup>−</sup>                 | ≠                    | 2H <sub>2</sub> O                       | +1,77  |
| Co <sup>3+</sup> + e <sup>-</sup>                                                 | ⇒                    | Co <sup>2+</sup>                        | + 1,81 |
| $F_2(g) + 2e^-$                                                                   | ⇒                    | 2F⁻                                     | + 2,87 |

TABLE 4B: STANDARD REDUCTION POTENTIALS

Increasing oxidising ability/Toenemende oksiderende vermoë

Copyright reserved

Increasing reducing ability/Toenemende reduserende vermoë

4 Grade 11

#### THE PERIODIC TABLE OF ELEMENTS

| 1                 | 2                  | 3               | 4                | 5        | 6               | 7            | 8                | 9               | 10              | 11           | 12              | 13               | 14               | 15               | 16          | 17          | 18     |
|-------------------|--------------------|-----------------|------------------|----------|-----------------|--------------|------------------|-----------------|-----------------|--------------|-----------------|------------------|------------------|------------------|-------------|-------------|--------|
| (I)               | (II)               |                 | -                |          |                 |              |                  |                 |                 |              |                 | (III)            | (IV)             | (V)              | (VI)        | (VII)       | (VIII) |
| 1                 | ]                  |                 |                  | KEY      |                 |              |                  |                 |                 |              |                 |                  |                  |                  |             |             | 2      |
| Ψ                 |                    |                 |                  |          |                 |              | Atomic           | number<br>7     |                 |              |                 |                  |                  |                  |             |             | Не     |
| <u>∾1</u>         |                    | 7               |                  |          |                 |              | 2                | 9               |                 |              |                 |                  | -                | <u> </u>         | 1 -         | <u> </u>    | 4      |
| 3                 | 4                  |                 |                  | _        |                 |              |                  |                 | -               |              |                 | 5                | 6                | 7                | 8           | 9           | 10     |
| oĽi               | က Be               |                 |                  | E        | lectroneg       | ativity –    | → <del>~</del> ( | <b>`</b> □      | — Sym           | bol          |                 | оB               | ည်က              | οŅ               | က်ဂ         | o,F         | Ne     |
| <b>∽</b> 7        | <b>~</b> 9         |                 |                  |          |                 |              |                  |                 |                 |              |                 | <b>∾</b> 11      | <b>∾</b> 12      | ო14              | ო16         | <b>⊅</b> 19 | 20     |
| 11                | 12                 |                 |                  |          |                 |              |                  |                 |                 |              |                 | 13               | 14               | 15               | 16          | 17          | 18     |
| ດNa               | ∾Mg                |                 |                  |          |                 |              | •                | • •             |                 |              |                 | იAl              | ∞Si              | <del>~</del> ₽   | ыS          | ဝငို        | Ar     |
| 023               | <b>~</b> 24        |                 |                  |          |                 | Appro        | ximate re        | elative a       | tomic n         | nass         |                 | <b>~</b> 27      | <b>~</b> 28      | <b>№</b> 31      | ∾ <u>32</u> | ო35,5       | 40     |
| 19                | 20                 | 21              | 22               | 23       | 24              | 25           | 26               | 27              | 28              | 29           | 30              | 31               | 32               | 33               | 34          | 35          | 36     |
| ∞K                | o Ca               | ຕຸSc            | Tiي              | ٧ڡ       | Crي             | Mnبې         | ∞Fe              | ထူငဝ            | ∞Ni             | ာ့Cu         | Znي             | ဖှGa             | ∞Ge              | oAs              | ₽Se         | ∞Br         | Kr     |
| 039               | <b>∽</b> 40        | <b>∽</b> 45     | <b>~</b> 48      | √51      | ∽52             | ∽55          | ∽56              | <del>~</del> 59 | <del>~</del> 59 | √63,5        | <del>~</del> 65 | <b>∽</b> 70      | <del>~</del> 73  | ∾75              | ∾79         | <b>№80</b>  | 84     |
| 37                | 38                 | 39              | 40               | 41       | 42              | 43           | 44               | 45              | 46              | 47           | 48              | 49               | 50               | 51               | 52          | 53          | 54     |
| ∞Rb               | o Sr               | ΝN              | ₽Zr              | Nb       | ωMo             | പു           | Ru               | Rh              | ∾Pd             | രAg          | ⊳Cd             | ⊳ln              | ∞Sn              | იSb              | -Te         | ام          | Хе     |
| <b>0</b> 86       | <b>~</b> 88        | <del>~</del> 89 | <b>√</b> 91      | 92       | <del>~</del> 96 | <del>,</del> | ∾101             | ิ^่103          | N106            | <u></u> √108 | <u></u> √112    | <u></u> √115     | <b>⊤</b> 119     | <u></u> √122     | ∾128        | №127        | 131    |
| 55                | 56                 | 57              | 72               | 73       | 74              | 75           | 76               | 77              | 78              | 79           | 80              | 81               | 82               | 83               | 84          | 85          | 86     |
| <mark>⊾</mark> Cs | പBa                | La              | Hfى              | Та       | W               | Re           | Os               | lr              | Pt              | Au           | Hg              | ∞Tℓ              | ∞Pb              | െBi              | Po          | At          | Rn     |
| <b>O</b> 133      | o <sup>ˆ</sup> 137 | 139             | <del>,</del> 179 | 181      | 184             | 186          | 190              | 192             | 195             | 197          | 201             | <del>~</del> 204 | <del>~</del> 207 | <del>~</del> 209 | 5           | 2           |        |
| 87                | 88                 | 89              |                  |          |                 |              |                  |                 |                 |              |                 |                  |                  |                  |             |             |        |
| Fr                | Ra                 | Ac              |                  | EO       | 50              | 60           | 61               | 60              | 62              | 64           | 6E              | 66               | 67               | 60               | 60          | 70          | 74     |
| 0,1               | o <sup>226</sup>   |                 |                  | 00<br>Co | 59<br>Dr        | 00           | Dm               | 02<br>Sm        | 03<br>E         | 04<br>Cd     | 00<br>Th        | 00               | 0/               | 00               | 09<br>Tm    | 70<br>Vh    |        |
|                   |                    |                 | J                | Ce       | Pr              |              | PM               | Sm              | EU              | Ga           | 10              |                  |                  |                  | 10          | 10          |        |
|                   |                    |                 |                  | 140      | 141             | 144          |                  | 150             | 152             | 157          | 159             | 103              | 105              | 107              | 109         | 1/3         | 1/5    |
|                   |                    |                 |                  | 90       | 91              | 92           | 93               | 94              | 95              | 96           | 97              | 98               | 99               | 100              | 101         | 102         | 103    |
|                   |                    |                 |                  | Th       | Ра              | U            | Np               | Pu              | Am              | Cm           | Bk              | Cf               | Es               | Fm               | Md          | No          | Lr     |
|                   |                    |                 |                  | 232      |                 | 238          |                  |                 |                 |              |                 |                  |                  |                  |             |             |        |

NW/November 2024

Grade 11