

education

Department:
Education
North West Provincial Government
REPUBLIC OF SOUTH AFRICA

PROVINCIAL ASSESSMENT

GRADE 11

AGRICULTURAL SCIENCES P1
NOVEMBER 2024
MARKING GUIDELINES

MARKS: 150

These marking guidelines consist of 11 pages.

SECTION A

QUESTION 1

1.1	1.1.1 1.1.2 1.1.3 1.1.4 1.1.5 1.1.6 1.1.7 1.1.8 1.1.9 1.1.10	B ✓ ✓ B ✓ ✓ A ✓ ✓ D ✓ ✓ C ✓ ✓ D ✓ ✓ C ✓ ✓ A ✓ ✓ D ✓ ✓ C ✓ ✓	(10 x 2)	(20)
1.2	1.2.1 1.2.2 1.2.3 1.2.4 1.2.5	None ✓✓ Both A and B ✓✓ None ✓✓ A only ✓✓ B only ✓✓	(5 x 2)	(10)
1.3	1.3.1 1.3.2 1.3.3 1.3.4 1.3.5	Electron configuration ✓✓ Oxygen ✓✓ Ammonification ✓✓ Humus ✓✓ Soil degradation ✓✓	(5 x 2)	(10)
1.4	1.4.1 1.4.2 1.4.3 1.4.4 1.4.5	Hydrogen ✓ 1.00mm to 2.00mm ✓ Solubilisation ✓ Compost ✓ Chelates ✓	(5 x 1)	(5)

TOTAL SECTION A: 45

(1)

(1)

(1)

SECTION B

2.2

QUESTION 2:

211

2.1	Organic and	l inorganic	compounds
-----	-------------	-------------	-----------

Classifying structure A

b) **Protons** - 94 ✓

c) Electrons - 94 ✓

2.1.1	Alcohol ✓	(1)
2.1.2	 Identifying structures a) Building blocks of proteins: D ✓ b) Important constituent of fats: C ✓ c) Valuable nutrient for plant growth: B ✓ 	(1) (1) (1)
2.1.3	Identifying compounds A, C and D A – Ethanol ✓ C – Glycerol ✓ D – Amino group ✓	(1) (1) (1)
Pluto	nium	
2.2.1	The number of a) Neutrons - 145 ✓	(1)

2.2.2 Collective name for protons, electrons and neutrons

Subatomic particles ✓ (1)

2.2.3 Particle that does not contribute towards the mass of an atom Flectron ✓ (1)

2.3 Periodic table

2.3.1 THREE characteristics of a period table

- The periodic table is organised in a grid, with rows running left to right and columns running from top to bottom ✓
- Each element is placed in a specific place on the grid because of the way it behaves / the amount of subatomic particles ✓
- Each of the rows is a different period. Elements in the same row have something in common ✓
- Every element in the top row has one atomic orbital for its electrons. ✓
- All of the elements in the second row have two atomic orbitals for their electrons, and so on down the periodic table. ✓
- The maximum number of electron orbitals or electron shells for any element is seven ✓
- Each column running top to bottom is called a group ✓
- The elements in a group have the same number of electrons in their outer orbital / valence electrons ✓

Grade 11 – Marking Guidelines

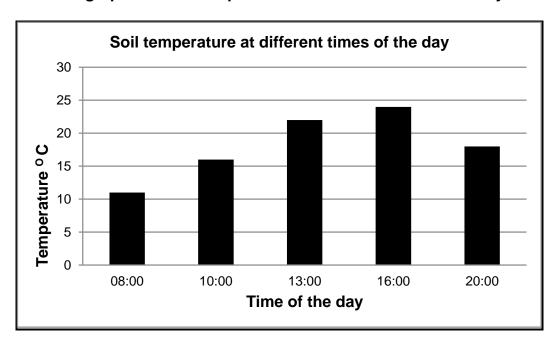
Every element in the first column group one has one (valence)

		 electron in its outer shell ✓ Every element on the second column group two has two (valence) electrons in the outer shell ✓ etc. (Any 3) 	(3)
	2.3.2	Chemical symbols of: MERCURY – Hg ✓ MOLYBDENUM – Mo ✓	(2)
2.4	Lewis	dot structure of oxygen	
		 MARKING GUIDELINES Oxygen atom ✓ Six valence electrons ✓ 	(2)
2.5	Organ	ic and inorganic compounds	
	2.5.1	Identifying compounds A and B A – Organic compound ✓ B – Inorganic compound ✓	(2)
	2.5.2	 Identifying letters A-D a) Provides insulation - C ✓ b) Transports nutrients - D ✓ c) Found in non-living organisms - B ✓ 	(1) (1) (1)
2.6	TWO f	unctions of ammonia for agricultural production	
		 Used as a fertiliser ✓ Source of nitrogen ✓ Used in pharmaceutical industry to produce medicine ✓ (Any 2) 	(2)
2.7	Differe	ence between essential and non-essential amino acids	
		ESSENTIAL AMINO ACIDS – Amino acids that are obtained from the feed of living organisms ✓ NON-ESSENTIAL AMINO ACIDS – amino acids that can be synthesized by the body of living organisms ✓	(2)

2.8	Alkanes			
	2.8.1	Chemical formula of Butane C ₄ H ₁₀ ✓		(1)
	2.8.2	 TWO functions of alkanes in agricultural production Used to fuel machinery such as irrigation pumps, harvesting machines and tractors ✓ Used as primary raw materials in the production of plastics Used to form herbicides and pesticides ✓ 		(2)
2.9	TWO d	lifferences between fats and oils		
		 FATS Animal origin ✓ Solid at room temperature ✓ Higher melting point ✓ Increases cholesterol levels ✓ Have single bonds between carbon atoms ✓ 	(Any 2)	(2)
		 OILS Plant origin ✓ Liquid at room temperature ✓ Lower melting point ✓ Decreases cholesterol level in the blood ✓ Single or double bonds between carbon atoms ✓ 	(Any 2)	(2) [35]
QUEST	ION 3: S	SOIL SCIENCES		
3.1	Soil ho	prizons		
	3.1.1	Most common diagnostic topsoil horizon Orthic O ✓		(1)
	3.1.2	Naturally occurring consolidated bedrock R horizon ✓		(1)
	3.1.3	Soil horizon found in wet soil E/G horizon ✓		(1)
	3.1.4	Diagnostic subsoil which has a uniformly red colour Red apedal/B-horizon√		(1)
3.2	Methods of determining soil texture			
	3.2.1	Identifying methods A and B a) METHOD A – Texture triangle diagram ✓ b) METHOD B – Sieve method ✓		(2)

	3.2.2	 ONE advantage of using method B Simple and cost-effective/cheaper ✓ More accurate ✓ in separating soil particles than other methods (Any 1) 	(1)
	3.2.3	 To assess the efficacy of various fertilsers and soil additives ✓ To understand the effectiveness of irrigation better ✓ To have a better understanding of how soil will react to temperature changes ✓ 	(2)
0.0	Caila	• To be guided as to which type of crop to cultivate ✓ (Any 2)	(2)
3.3	SOII SI	tructure	
	3.3.1	 Soil structure 1, 2 and 3 SOIL 1 – Blocky structure ✓ SOIL 2 – Platy structure ✓ SOIL 3 – Single grain ✓ 	(1) (1) (1)
	3.3.2	Identification of the SOIL found in B-horizon SOIL 1 ✓	(1)
	3.3.3	TWO factors that could cause the destruction or decline of soil structures • Cultivation of wet soils ✓ • Excessive cultivation ✓ • Flood irrigation ✓ • Heavy machinery and treading by animals ✓ • Overgrazing ✓ • Removal of plant residues ✓ (Any 2)	(2)
3.4	Soil c	olour	
	3.4.1	Highly oxidised iron □ ✓	(1)
	3.4.2	Patches of different colours suggesting waterlogging E√	(1)
	3.4.3	Presence of organic matter content A ✓	(1)
	3.4.4	Loss of oxidized iron from lack of oxygen, poorly drained B/C ✓	(1)

3.5 **Bulk density**


3.5.1 **Bulk density calculation**

3.5.2 TWO factors that influence the bulk density of the soil

- Amount of organic matter ✓
- Compaction/Degree of compaction ✓
- Minerals/mineral composition ✓
- Presence or absence of soil structure ✓
- Size of its particles ✓ (Any 2)

3.6 3.6.1 **Bar graph**

Bar graph to show temperature at different times of the day

CRITERIA/RUBRIC/MARKING GUIDELINES

- Correct heading with both variables ✓
- X-axis: Correctly calibrated with label (Time of the day) ✓
- Y-axis: Correctly calibrated with label (Temperature) ✓
- Correct units (⁰C) ✓
- Bar graph ✓
- Accuracy (80% + correctly plotted) ✓

	3.6.2	 ONE important factor influencing soil temperature Altitude ✓ Colour of the soil ✓ Distance from the equator ✓ Seasons ✓ Slope/aspect ✓ Vegetation ✓ Wind ✓ 	(Any 1)	(1)
3.7	Soil ai	r		
	3.7.1	 Type of soil air a) Respiration of plant roots Oxygen ✓ b) Dissolves rocks 		(1)
		Carbon dioxide ✓		(1)
	3.7.2	 TWO factors that affect the composition of soil air Composition of soil air ✓ Microbial activity ✓ Nature and condition of soil ✓ Seasonal variation ✓ Temperature ✓ Type of crop ✓ 	(Any 2)	(2) [35]
QUEST	ION 4: S	SOIL ORGANIC MATTER		
4.1	Namin	g of micro-organisms		
	4.1.1	Thread-like bacteria that looks like a fungi Actinomycetes ✓		(1)
	4.1.2	Microscopic roundworm Nematode ✓		(1)
	4.1.3	Multicellular organism Fungi ✓		(1)
	4.1.4	Unicellular organism that lacks a cell wall Protozoa ✓		(1)
	4.1.5	Micro-organism that can synthesise and make their food Bacteria ✓		(1)

(1)

4.2.1 Identification of a soil pH

a) Higher concentration of potassium (K+) and sodium (Na²+) ions: Alkaline / pH >7 ✓

b) Higher concentration of magnesium (Mg²⁺) and calcium (Ca²⁺) ions:

Neutral / sweet soils / pH 7 ✓ (1)

4.2.2 Difference between reserve acidity and active acidity

RESERVE ACIDITY – refers to hydrogen ions (H⁺) bound onto soil particles ✓

ACTIVE ACIDITY – refers to the hydrogen ions (H⁺) concentration in soil water ✓ (2)

4.3 Symbiosis in mycorrhiza fungus and rhizobium bacteria

4.3.1 Symbiotic relationship in MICRO-ORGANISM B

Mutualistic/Mutualism ✓ (1)

4.3.2 TWO importance of micro-organisms A and B in the soil

- Helps roots to absorb zinc and copper ✓
- Produce a sticky substance to glue soil particles together ✓
- Protect plants against diseases ✓
- Provides phosphorus to crops that grow on poor soils ✓
- Nitrogen fixation in legume crops ✓
- Decomposition of organic matter ✓ (Any 2)

4.3.3 **TWO requirements of living organisms**

- Soil fertility ✓
- Soil moisture ✓
- Soil temperature ✓
- Soil air and aeration ✓
- Light ✓
- Soil pH ✓
- Food and energy supply ✓ (Any 2)

4.3.4 Indicating the type of micro-organism

MICRO-ORGANISM A: Mychorrhizae fungi ✓
MICRO-ORGANISM B: Rhizobium bacteria ✓
(2)

4.4 Soil colloids

4.4.1 Definition of soil colloids

- A soil colloid is a very small particle ✓
- that can be either inorganic or organic / that can be suspended in water for a very long time / have a small negative charge that attracts cations / is the most active part of soil ✓ (2)

Copyright reserved Please turn over

(2)

(2)

(3)

4.4.2 TWO ways of manipulating the cations and cation exchange in a soil that is nutrient poor

- Add nutrients in the form of fertilisers ✓
- Increases the capacity of the soil to hold available nutrients ✓
- Remove unwanted cations such as aluminium from the soil solution through desorption
 ✓ (Any 2)

4.5 Organic matter in the soil

4.5.1 THREE factors that lower the organic matter content of the soil

- Climate ✓
- Cultivation of natural veld ✓
- Drainage ✓
- Irrigation ✓
- Monoculture ✓
- Plant cover ✓
- Poor veld management practices ✓
- Texture ✓
- Tillage of the soil ✓
- Type of plant ✓
- Use of artificial fertilisers ✓ (Any 3)

4.5.2 TWO biological effects of a decline in organic matter

- Increased presence of saprophytic organisms ✓
- Lowers the energy levels of micro- and macro-organisms in the soil ✓
- Lowers the rate of production of antibiotics in the soil ✓
- Micro- and macro organisms run out of food and die ✓
- Plants will not be protected against pathogens ✓ (Any 2)

4.5.3 **TWO** elements released when organic matter is mineralised

- Nitrogen ✓
- Phosphorus ✓
- Sulphur ✓ (Any 2)

4.5.4 TWO chemical effects of organic matter in the soil

- Provides pH buffering of the soil ✓
- Helps to amend soils with high aluminium content ✓
- Large volumes of carbon dioxide are generated ✓
- Large amounts of nitrogen, phosphorus and sulphur are released during the mineralisation of plant nutrients √
- Organic matter can form chelates ✓ (Any 2) (2)

4.5.5 TWO practices that improve organic matter content

- Cover crops ✓
- Compost ✓
- Minimum tillage ✓ (Any 2) (2)

4.6 Nutrient cycle

4.6.1 Identifying processes 1, 2 and 3

PROCESS 1 – Fertilisation ✓

PROCESS 2 – Nitrification/nitrogen fixation ✓

PROCESS 3 – Denitrification ✓

(3)

4.6.2 The type of nutrient cycle

Nitrogen cycle ✓

(1) **[35]**

TOTAL SECTION B: 105

GRAND TOTAL: 150