

education

Department: Education North West Provincial Government REPUBLIC OF SOUTH AFRICA

PROVINCIAL ASSESSMENT

GRADE 10

PHYSICAL SCIENCES: CHEMISTRY (P2) NOVEMBER 2024

MARKS: 100

TIME: 2 hours

This question paper consists of 10 pages and 2 data sheets.

Copyright reserved

Please turn over

1

INSTRUCTIONS AND INFORMATION

Read the following instructions carefully before answering the questions.

- 1. This question paper consists of EIGHT questions. Answer ALL the questions in the ANSWER BOOK.
- 2. Start the answers to EACH question at the top of a NEW page.
- 3. Number the answers correctly according to the numbering system used in this question paper.
- 4. Leave ONE line between two sub-questions, e.g., between QUESTION 2.1 and QUESTION 2.2
- 5. You may use a non-programmable calculator.
- 6. You may use appropriate mathematical instruments.
- 7. Show ALL formulae and substitutions in ALL questions.
- 8. Round off your FINAL numerical answers to a minimum of TWO decimal places.
- 9. Give brief motivations, discussions, etc. where required.
- 10. You are advised to use the DATA SHEETS.
- 11. Write neatly and legibly.

QUESTION 1: MULTIPLE-CHOICE QUESTIONS

Various options are provided as possible answers to the following questions. Each question has only ONE correct answer. Choose the answer and write only the letter (A–D) next to the question numbers (1.1 to 1.7) in the ANSWER BOOK, e.g. 1.8 E.

- 1.1 The process when a solid substance change directly to gaseous phase is called ...
 - A evaporation.
 - B condensation.
 - C sublimation.
 - D boiling.
- 1.2 Which ONE of the following substances is a pure substance?
 - A Steel
 - B Sulphur
 - C Juice
 - D Salt water
- 1.3 Which ONE of the following represents the electronic structure of Phosphorus (P).
 - A $1s^22s^22p^63s^2$
 - B 1s²2s²2p⁶3s²3p³
 - C 1s²2s²2p⁶3s²3p⁵
 - D 1s²2s²2p⁶3s²3p⁶
- 1.4 In which ONE of the following compounds do covalent bond occur between elementary particles?
 - A Sodium chloride
 - B Mercury
 - C Ammonia
 - D Carbon

(2)

(2)

(2)

(2)

- 1.5 What is the percentage of hydrogen in a molecule of hydrogen peroxide with molar mass of 34 g.mol⁻¹, if one mole of hydrogen reacts with one mole of oxygen?
 - A 72,72 %
 - B 94,12 %
 - C 11,11 %
 - D 5,88 %

(2)

- 1.6 If 30 g of reactant A reacts completely with 25 g of reactant B, which ONE of the following statements is CORRECT?
 - A The total mass of the products will be equal to 55 g.
 - B The total mass of products for any unreacted reactants will be less than 55 g.
 - C The total mass of products for any unreacted reactants will be greater than 55 g.
 - D The total mass of products for any unreacted reactants will be 55 g. (2)
- 1.7 Two identical flasks are filled with different gasses at the same temperature and pressure. One flask contains ozone (O₃) and the other an unknown gas X.

The mass of the ozone gas in the flask is 0,48 g and the mass of gas X in the flask is 0,34 g. Gas X is:

- A O₂
- B SO₂
- C H₂S
- D NH₃

(2) **[14]**

2.2

2.1 In the table below are different substances. Use the following substances to answer the questions that follow.

	SUBSTANCES
Α	Cobalt
В	Gold
С	Phosphorus
D	Silicon
Ε	Air
F	Ammonium nitrate

2.1.1	Identify the ELEMENT that has a dull surface and cannot conduct	(1)
	clotholy.	(')
2.1.2	Identify ONE substance that is ductile.	(1)
2.1.3	Which element has magnetic properties?	(1)
2.1.4	Identify the element that is a metalloid.	(1)
2.1.5	Write down the chemical formula for substance F (Ammonium nitrate).	(2)
The ba hard p	ase of a frying pan is made from aluminium while the handle is made of lastic.	
2.2.1	What benefit does the base of the pan, made from aluminium, have?	(1)
2.2.2	Why would the handle of the pan be made of plastic?	(1) [8]

Grade 10 learners conducted an experiment to determine the heating curve of water by using ice cubes. The experiment was set up as shown below.

Х

3.1 Define the term *temperature*.

(2)

(1)

- 3.2 Name the apparatus labelled X.
- 3.3 Why is it important to continuously stir the melting ice with a glass rod? (1)
- 3.4 The graph below shows the results of the experiment.

3.4.1 Name the process taking place between t_1 and t_2 . (1)

- 3.4.2 Will the water particles move SLOWER or FASTER between t₂ and t₃ when compared to the movement of the particles between 0 and t₁? Give a reason for your answer.
- 3.4.3 Will the potential energy between t₃ and t₄ INCREASE, DECREASE or REMAIN THE SAME? (1)
- 3.4.4 Can the particles be compressed between t₄ and t₅? Answer YES or NO only. (1)
- 3.4.5 The forces between particles of ethanol are weaker than those in water.
 Will the boiling point for ethanol be GREATER THAN or LESS THAN 100 °C under the same standard conditions? (1)

[10]

4.1 Naturally occurring oxygen consists of three isotopes indicated below:

ISOTOPE	PERCENTAGE ABUNDANCE (%)
O-16	99,76
O-17	0,04
O-18	Х

		$A\ell + N_2 \rightarrow A\ell N$						
	Alumir	nium reacts with nitrogen according to the following reaction equation:						
	4.2.2	State AND explain another one property of aluminium that can be attributed to the type of bond identified.	(2)					
	4.2.1	Name the type of bonding between the aluminium atom that makes it a good conductor of electricity.	(1)					
4.2	Alumir	nium is a metal and a good conductor of electricity.						
	4.1.3 Calculate the relative atomic mass of oxygen.							
	4.1.2 What percentage abundance does O-18 occupy?							
	4.1.1	Define <i>isotopes</i> .	(2)					

The graph below shows the first ionisation energies of the elements of period 3 in the periodic table.

5.1 Define *ionisation energy*.

(2)

- 5.2 Describe the general trend in the first ionisation energies from sodium to argon. (1)
- 5.3 Explain the difference in the first ionisation energies of magnesium and chlorine.
- 5.4 How will the SECOND ionisation energy of sodium compare to its FIRST ionisation energy? Choose from GREATER THAN, EQUAL TO or LESS THAN. Explain your answer.

(4) [11]

(4)

Classify the following as a PHYSICAL or CHEMICAL change.

QUESTION 6

6.1

	6.1.1	Iron metal is melted. Explain your answer.	(2)
	6.1.2	Grey hair is dyed to a red colour.	(1)
	6.1.3	A car rusts.	(1)
6.2	The bal	anced equation for the reaction is:	
		2 Pb(NO ₃) ₂ (s) → 2 PbO(s) + 4 NO ₂ (g) + O ₂ (g)	
	6.2.1	What type of reaction is shown above?	(1)
	6.2.2	By use of a calculation prove that the law of conservation of mass is TRUE for this reaction.	(5)
	6.2.3	When 6,62 g of lead nitrate [$Pb(NO_3)_2$] is heated, 4,46 g of solid is produced. What is the mass of gas that will be produced?	(2)
6.3	Balance	e the following reaction equation:	
		$NH_3(g) + O_2(g) \to NO(g) + H_2O(\ell)$	(2) [14]

QUESTION 7

7.1	Calculate the concentration of a solution prepared by dissolving 5,85 g of sodium chloride in enough water to make a 500 cm ³ solution.	(4)
7.2	Explain the concept of water of crystallisation and give the formula of a common hydrated salt.	(3)
7.3	A learner heats 5 g of a hydrated salt until all the water of crystallisation has evaporated, leaving 3 g of the anhydrous salt. Determine the percentage of water of crystallisation in the hydrated salt.	(2) [9]

There are several steps in the production of fertelisers. In the third step, nitrogen dioxide is absorbed by water to produce nitric acid. Nitric acid and ammonia can react together in an acid-base process to form the salt, ammonium nitrate, which is soluble in water.

$$3 \operatorname{NO}_2(g) + \operatorname{H}_2O(\ell) \rightarrow 2 \operatorname{HNO}_3(\operatorname{aq}) + \operatorname{NO}(g)$$

$NH_3(\ell) + HNO_3(\ell) \rightarrow NH_4NO_3(s)$

		TOTAL:	100					
	8.3.4	number of nitrogen atoms present in 2 moles of ammonium nitrate.	(4) [17]					
	8.3.3	volulme of 12 g of nitrogen oxide at STP.	(5)					
	8.3.2 number of moles of ammonium nitrate if 15 g of it was formed.							
	8.3.1	molecular mass of ammonium nitrate.	(2)					
8.3	Calculate the:							
8.2	Give the scientific name of nitric acid.							
8.1	Define	mole.	(2)					

DATA FOR PHYSICAL SCIENCES GRADE 10 PAPER 2 (CHEMISTRY)

TABLE 1: PHYSICAL CONSTANTS/TABEL 1: FISIESE KONSTANTES

NAME/NAAM	SYMBOL/SIMBOOL	VALUE/WAARDE
Standard pressure Standaarddruk	p ^θ	1,013 x 10⁵ Pa
Molar gas volume at STP Molêre gasvolume by STD	Vm	22,4 dm ³ ·mol ⁻¹
Standard temperature Standaardtemperatuur	Τ ^θ	273 K
Charge on electron Lading op elektron	е	-1,6 x 10 ⁻¹⁹ C
Avogadro's constant Avogadro-konstante	N _A	6,02 x 10 ²³ mol ⁻¹

TABLE 2: FORMULAE/TABEL 2: FORMULES

$n = \frac{m}{M}$	n= $\frac{N}{N_A}$
$c = \frac{n}{V}$ OR $c = \frac{m}{MV}$	$n = \frac{V}{V_m}$

TABLE 3: THE PERIODIC TABLE OF ELEMENTS/TABEL 3: DIE PERIODIEKE TABEL VAN ELEMENTE

1 (I)	2 (II)	3	4	5	6	7	8	9	10	11	12	13 (III)	14 (IV)	15 (V)	16 (VI)	17 (VII)	18 (VIII)
1 _ H ∾1			ŀ	(EY/SLE	UTEL	A r	tomic n Atoomg	umber getal									2 He 4
3	4]		Electr	onegativ	vity	29 ๑ Cu	Sym	bol			5	6	7	8	9	10
- ∟ - 7	т9 9			Elektro	negatiw	iteit	63,5	Sin	ibool			₀ D ∾11	⊷ 12∾	ം ∾14	"ე ლ16	₋ ר ל19	20
11	12	1				L	1					13	14	15	16	17	18
_م Na 23	<mark>אַ Mg</mark> ר 24				Approx Benad	ximate r erde rela	elative a a <i>tiewe a</i>	tomic m toomma	ass s <i>sa</i>			_ა , Аℓ ∽27	_∞ Si ∽28	_ ₽ ∾31	ي 32 י∧	_ Cℓ ∾35,5	Ar 40
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
∞ K	_e Ca	_ص Sc ت_45	يمTi ∓48	س 51∽	_∞ Cr	_{يم} Mn 55	_∞ Fe	∞Co	∞Ni ≂59	_െ Cu ≂ദാ 5	Znي €5	_∞ Ga	_∞ Ge ⊤73	oAs ∾75	. 4 Se	_∞ Br ∾ິ≋∩	Kr
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
∞ Rb	- Sr - 88	۲ ہے 89 ∽	. <mark>.</mark> Zr ∽91	Nb 92	_∞ Mo ∽96	ۍ Tc	<mark>പ്പRu</mark> ∾101	_∾ Rh	പ് <mark>Pd</mark> ∾106	م_Ag 108∽	<mark>, Cd</mark>	<mark>, In</mark> √115	_∞ Sn ∽119	<mark>م</mark> Sb 122∽	- Te ∾128	ہ ا ∾127	Xe 131
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
, Cs	, Ва	La	₀Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	∞ T ℓ	_∞ Pb	₀.Bi	<mark>ہ</mark> Po	_{يه} At	Rn
87	88	89	1/5	101	104	100	150	152	155	157	201	204	207	205			
<mark>ج</mark> Fr	, Ra	Ac		58 Co	59 Dr	60 N.d	61 Drm	62 Sm	63 E	64 Cd	65 Th	66 Dv	67	68 E r	69 T.m	70 Vb	71
L			_	140	141	144	Pm	150	152	157	159	163	165	167	169	173	175
				90 Th 232	91 Pa	92 U 238	⁹³ Np	⁹⁴ Pu	⁹⁵ Am	⁹⁶ Cm	⁹⁷ Bk	⁹⁸ Cf	⁹⁹ Es	100 Fm	101 Md	102 No	103 Lr

2 Grade 10