Technical Sciences

Grade: 12 NW/SEPTEMBER 2020

Education and Sports Development

Department of Education and Sports Development Department van Onderwys en Sport Ontwikkeling Lefapha la Thuto le Tihabololo ya Metshameko NORTH WEST PROVINCE

CAPACITOR

DEFINE a **CAPACITOR** as: a **device** for **storing electrical charge**.

CAPACITORS CAN BE:

POLARIZED or **ELECTROLYTIC** Capacitors

(They have specific polarity when connecting to a circuit)

ð

☑ Non **POLARIZED** Capacitors

(They can be connected in a way in the circuit irrespective of polarity)

Technical Sciences

Grade: 12

NW/SEPTEMBER 2020

CAPACITORS CAN HAVE: VARIABLE VALUES:

WHOSE CAPACITANCE can be <u>INCREASED</u> or <u>DECREASED</u> by turning a special Shaft connected to the Variable Capacitor (Tuning Circuit. i.e. Radio)

FIXED VALUES:

WHOSE CAPACITANCE cannot be INCREASED or DECREASED

MOST COMMON APPLICATIONS OF CAPACITORS

Smoothing capacitor in power supply circuits:

To change the pulsating DC voltage to a smooth DC voltage.

FILTER CIRCUIT:

Filter out unwanted signals depending on the frequency range of the filter

COUPLING CAPACITOR:

Allows AC signals to pass from ONE part of a circuit to another and to block an DC voltage

POWER SYSTEMS:

In single phase AC motors, to create enough torque to get the motor running when it is switched on.

CAPACITANCE

The <u>AMOUNT</u> of <u>ELECTRIC CHARGE</u> a <u>CAPACITOR</u> <u>can STORE</u> (on Its TWO PLATES) <u>Per Volts</u>.

MEASURED IN FARADS (F)

Technical Sciences			Grade: 12		NW	//SEPTEMBER	R 2020		
The Following Prefixes (Multipliers Are Used To Show Smaller Values)									
µ (Micro) Means 10 ⁻⁶ n		n	n (Nano) Means 10 ⁻⁹		-9	p (Pico) Means 10 ⁻¹²			
	Millic	onth	T	Thousand-Millionth		Million-	-Millionth		
1 C	00 00	0 µ F =1F		1 000 nF =1 µ F			1 OOC) pF =1nF	
		SUFFIX		SYMB0	DL	PO	WER OF 10		
		Micro Farad	l	μF			x 10 ⁻⁶		
		Nano Farad		nF			x 10 ⁻⁹		
		Pico Farad		pF			x 10 ⁻¹²		
		THE	ERE	LATIONS	HIP E	BET	WEEN:		
	CA	PACITAN	CE (C), CHARG	E OI	N T	HE PLATES	(O) &	
				VOLTAG	E (V):			
	$C = \frac{Q}{Q}$								
🖾 CA	CAPACITANCE (C), is DIRECTLY PROPORTIONAL to CHARGE on								
the	the PLATES (Q) ∂ INVERSELY PROPORTIONAL to the APPLIED								
VOLTAGE (V)									
AIR AS THE DIELECTRIC, THE CAPACITANCE OF CAPACITOR CAN									
BE CALCULATED BY: C = $\frac{A\epsilon_0}{d}$									
WHERE:									
$C = \underline{CAPACITANCE}(F)$									
A = AREA of the PLATES in <u>Square Metres</u> (m ²).									
N.B:									
(THE <u>GREATER</u> The <u>AREA</u> of the plates the <u>MORE CHARGE</u> can be STORED)									
		1							

EXAMPLE NO: 4

CALCUALATE THE CHARGE on a 10 μ F CAPACITOR when it is connected across a 200V DC supply.

EXAMPLE NO: 5

A steady CURRENT of 10 Amps Flows into a Previously DISCHARGED CAPACITOR for 20 Seconds, when the POTENTIAL DIFFERENCE between the plates is 600 Volts.

1 What is the CAPACITANCE of the CAPACITOR?

Hint: CALCULATE the CHARGE 1^{st} : Q = I. Δt

LEARNER ACTIVITY NO: 1

A PARALLEL - PLATE CAPACITOR as an AREA of 0, 0002 m^2 and the plates are SEPARATED 0, 001 m.

1 Calculate the CAPACITANCE of a CAPACITOR.

LEARNER ACTIVITY NO: 2

Calculate the POTENTIAL DIFFERENCE of a BATTERY connected to a parallel - plate CAPACITOR with a plate AREA of 0, 002 m² and plate SEPARATION of 2 mm if the CHARGE STORED on the plates is 4 pC.

LEARNER ACTIVITY NO: 3

A parallel-plate CAPACITOR as an AREA of 0, 0002 $\rm m^2$ and the plates are SEPARATED 0, 001 m

- 1 Calculate the CAPACITANCE of a CAPACITOR.
- 2 How MUCH CHARGE is on the POSITIVE PLATE if the CAPACITOR is connected to a 3 V battery?

LEARNER ACTIVITY NO: 4

A parallel-plate CAPACITOR has a plate AREA of $2 x 10^{-4} m^2$ and a plate separation DISTANCE of 1 mm.

1 Calculate its CAPACITANCE.

LEARNER ACTIVITY NO: 5

Two plates of a parallel-plate CAPACITOR are 5 mm apart and have a 2 m^2 AREA. A POTENTIAL DIFFERENCE of 100 V is applied across the CAPACITOR.

- 1 Calculate the CAPACITANCE of the CAPACITOR.
- 2 Calculate the CHARGE on each plate.

LEARNER ACTIVITY NO: 6

The TWO plates of a parallel-plate CAPACITOR are 3, 28 mm apart and each has an AREA of 12, 2 cm². Each plate carries a CHARGE of 0, 435 nC. The plates are in a vacuum (AIR).

- **1** CALCULATE THE:
 - **1.1** What is the CAPACITANCE of this CAPACITOR?
 - **1.2** What is THE POTENTIAL DIFFERENCE between the plates?

LEARNER ACTIVITY NO: 7

A PARALLEL - PLATE CAPACITOR has a CAPACITANCE of 5 pF and a CHARGE 0, 200 μC on each plate. The plates are 0, 6 mm apart.

- **1** CALCULATE THE:
 - **1.1** POTENTIAL DIFFERENCE BETWEEN the plates?
 - **1.2** AREA of each plate?

Formula Sheet				
$C = \frac{A\varepsilon_0}{d}$	$\epsilon_0 = 8.85 \ x \ 10^{-12} \ \mathrm{F.m^{-1}}$			
$Q = I.\Delta t$	$C = \frac{Q}{V}$			
$A = \Pi r^2 OR A = \Pi \frac{D^2}{4}$				

TRANSFORMER

PRINCIPLE AND OPERATION OF A TRANSFORMER

ELECTRICAL GENERATORS (AC & DC GENERATOR)

ELECTRIC MOTORS

- A TRANSFORMER IS A DEVICE USED TO STEP UP OR DOWN THE VOLTAGE.
- THE PURPOSE OF A TRANSFORMER IS TO INCREASE OR DECREASE VOLTAGE.

A TRANSFORMER CONSIST OF TWO COILS THAT ARE

◆ PRIMARY COIL (Np) Number of Turnings/Windings
◆ SECONDARY COIL (Ns) Number of Turnings/Windings
PRINCIPLE & OPERATION OF A TRANSFORMER:

TRANSFORMER

Grade: 12

☑ THE OPERATION of TRANSFORMERS DEPENDS ON THE PRINCIPLE of MUTUAL INDUCTION.

$\frac{E_s}{E_P} = \frac{V_s}{V_P} = \frac{N_s}{N_P} = \frac{I_P}{I_s}$

This is KNOWN as the TRANSFORMER EQUATION:

Where:

Vp = Primary Voltage (V)	Vs = Secondary Voltage (V)
Ip = Primary Current (A)	Is = Secondary Current (A)
Np = No. of Turns on the primary Coil	Ns= No. of Turns on the Secondary Coil
Ep = Emf induced on the primary Coil	Ep = Emf induced on the Secondary Coil

TWO TYPEs OF TRANSFORMERS

STEP UP

- Has more <u>Turns</u> or <u>Windings</u> on the <u>Secondary Coil</u> than the <u>Primary Coil</u>.
- Resulting in the Induced Secondary Voltage being More than the Primary Voltage

STEP DOWN

- <u>Has more Turns</u> or <u>Windings</u> on the <u>Primary Coil</u> than the <u>Secondary Coil</u>.
- Resulting in the Induced Primary Voltage being More than the Secondary Voltage

Example NO: 1

A Step -Up Transformer in the X-Ray Machines of a Hospital is used to Convert a Potential Difference of 120 V to 100 kV. If there are 50 Turnings in the Primary Coil.

1 HOW many TURNINGS are there in the SECONDARY COIL?

Example NO: 2

The ADAPTER of a CELLPHONE BATTERY has a TRANSFORMER that REDUCES the MAIN SUPPLY from 240 V to 6 V. If the PRIMARY COIL has 1000 turns/ windings.

Assume that the TRANSFORMER is 100% EFFICIENT and that the CURRENT IN the SECONDARY COIL is 10 A.

1 CALCULATE the RATIO of the turnings of this TRANSFORMER.

2 What is CURRENT in the PRIMARY COIL?

Example NO: 3

An IDEAL TRANSFORMER has a 500 Primary Turns and 3 000 SECONDARY TURNS. If the PRIMARY VOLTAGE is 240 V.

1 CALCULATE the SECONDARY VOLTAGE

Example NO: 4

An IDEAL TRANSFORMER with a RATIO OF 2:7 is FED FROM a 240 V SUPPLY.

1 CALCULATE THE OUTPUT VOLTAGE

Learner Activity NO: 1

CALCULATE the OUTPUT VOLTAGE for a Transformer if the SUPPLY VOLTAGE BETWEEN the VOLTAGES is 230 V.

THE Number of Turns on the Primary Coil is 2500 and on the SECONDARY COIL is 150

Learner Activity NO: 2

A SINGLE PHASE TRANSFORMER HAS 6000 TURNS on its PRIMARY WINDING, WHICH IS CONNECTED to a 230 V AC SUPPLY. The VOLTAGE on the SECONDARY SIDE is 113, 5 V.

1 CALCULATE the NUMBER of TURNS on the SECONDARY SIDE.

Learner Activity NO: 3

A CD PLAYER IS DESIGNED TO WORK ON A 6 V POTENTIAL DIFFERENCE.

The ELECTRICAL POTENTIAL DIFFERENCE SUPPLY IS 240 V. Kabza Da Small DECIDES TO USE A TRANSFORMER THAT HAS 480 WINDINGS IN ITS PRIMARY COIL FOR HIS CD - PLAYER.

1 CALCULATE the NUMBER of WINDINGS in the SECONDARY COIL of the TRANSFORMER

Learner Activity NO: 4

An IDEAL TRANSFORMER has TURNS RATIO 8:1 and the PRIMARY CURRENT is 3 A WHEN it is SUPPLIED AT 240 V.

1 CALCULATE the SECONDARY VOLTAGE and CURRENT.

Technical Sciences

Grade: 12

NW/SEPTEMBER 2020

(AC ♂ DC GENERATOR)

THERE ARE TWO TYPES OF GENERATORS:

AC GENERATOR & DC GENERATOR.

AC/DC GENERATOR CONVERTS:

MECHANICAL ENERGY INTO ELECTRICAL ENERGY.

BASED on same **FUNDAMENTAL PRINCIPLE** which is **FARADAY'S LAW** of **ELECTROMAGNETIC INDUCTION**.

THE PRINCIPLE OF FUNCTIONING OF A GENERATOR IS THE LAW OF ELECTROMAGNETIC INDUCTION:

The layout of a **SIMPLE AC GENERATOR** is shown in **FIGURE BELOW**.

☑ The CONDUCTOR in the SHAPE of a coil is CONNECTED TO a SLIP RING.

- ☑ The CONDUCTOR is then MANUALLY ROTATED in the MAGNETIC FIELD GENERATING an ALTERNATING EMF.
- ☑ The SLIP RINGS are CONNECTED to the LOAD via BRUSHES.

DC GENERATOR

- A simple DC GENERATOR is constructed the same way as an AC GENERATOR
- EXCEPT that there is ONE SLIP RING which is SPLIT into TWO PIECES,
- ☑ CALLED a COMMUTATOR, so the CURRENT in the EXTERNAL CIRCUIT does not change direction.

The layout of a **DC GENERATOR** is **SHOWN BELOW**.

☑ The SPLIT-RING (COMMUTATOR) accommodates for the CHANGE in DIRECTION of the CURRENT in the LOOP,

☐ THUS CREATING DIRECT CURRENT (DC) CURRENT GOING through the BRUSHES and OUT to the CIRCUIT.

Induced emf for a DC Generator Output of a d.c generator

IN CONCLUSION:

1. AC GENERATOR uses SLIP - RINGS on output while DC GENERATOR use SPLIT - RINGS COMMUTATOR.

COMMUTATOR

MAINTAINS ELECTRICAL CONTACT BETWEEN THE LOAD AND THE ROTATING COIL IN A DC GENERATOR OR MOTOR

ELECTRIC MOTORS

An ELECTRIC MOTOR works by using a source of EMF to make a CURRENT FLOW in a CONDUCTOR LOOP.

Technical Sciences	Grade: 12	NW/SEPTEMBER 2020		
	Electr	ic Motor		
MOTORS CONVE	ERT ELECTR	RICAL ENERGY INTO		
MECHANICAL ENE	RGY			
APPLICATIONS OF GENERATORS AND MOTOR				
GENERAT	ORS	MOTORS		
Copyright reserved		17		

,	Fechnical Sciences	Grade: 12	NW	//SEPTEMBER 2020
🛛 Bio	cycle Dynamo		\checkmark	In Washing Machines
☑ Hybrid Electric Vehicle (HEV) Drive Systems			In Mixers	
🛛 Aii	Aircraft Auxiliary Power Generation			In Dentist Drills
☑ W:	Wind Generators		\checkmark	In Fans
🛛 Hi	gh Speed Gas Turbine Ge	enerators	\checkmark	The Starter Of A Car

Learner Activity NO: 1

- 1 Identify the following parts labelled 1 4
- 2 What type of motor is this?
- **3** What energy conversion that take place in this motor
- 4 Name the function of part 4

Technical Sciences	Grade: 12	NW/SEPTEMBER 2020			
ELECTRIC POWER					
	DEFINE POWEI	R As:			
☑ The RATE at which ELECTRICAL ENERGY is CONVERTED in an ELECTRIC CIRCUIT.					
W	<u>RITTEN MATHEMA</u>	<u>TICALLY</u> AS:			
(P :	$(P = \frac{W}{\Delta t})(P = VI)(P = I^2R)(P = \frac{V^2}{R})$				
SI UN	NIT For POWER (P)	is Watts (W).			
PRACTICAL UN	<u>NITS</u> of <u>POWER</u> is <u>k</u>	<u>KILOWATT HOUR</u> (kWh)			
	N:B 1 kWh = $3.6 x$: 10 ⁶ J			
THE HEATI	THE HEATING EFFECT OF ELECTRIC CURRENT				
MATHEMATICALLY:					
W = P Δt : W = I ² R Δt : W = $\frac{V^2}{R}\Delta t$: W = VI Δt :					
N.B: $W = ENERGY(E)$					
<u>SI UNIT</u> OF <u>ENERGY</u> IS <u>JOULES (</u> J) .					
COST OF ELECTRICITY					
COST OF ELECTRICITY = (kWh) x Tarrifs.					
	EXAMPLE NO:	1			

A DC Motor takes 9 A from 240 V Power Supply. CALCULATE THE POWER INPUT to the Motor

EXAMPLE NO: 5

A HEATING ELEMENT ABSORBS 2, 1 kW of POWER and the CURRENT is 10, 5 A.

CALCULATE THE VOLTAGE APPLIED to the HEATING ELEMENT.

EXAMPLE NO: 6

A 12 V BATTERY is CONNECTED across a LOAD HAVING a RESISTANCE of 10Ω .

1 CALCULATE THE:

- 1.1 CURRENT Flowing in the load
- 1.2 POWER consumed
- 1.3 HEAT DISSIPATED in 60 min
- 1.4 COST of ELECTRICITY: Tariff R0. 50 Per kWh

LEARNER ACTIVITY NO: 1

A CONTRACTOR COIL has RESISTANCE of 20 Ω CALCULATE THE POWER absorbed by this coil from 240 V DC supply.

LEARNER ACTIVITY NO: 5

An ELECTRIC HEATER of RESISTANCE 8 Ω draws 15 A from the SERVICE MAINS in 2 Hours.

1 CALCULATE THE:

- 1.1 POWER consumed
- 1.2 HEAT DISSIPATED in 2 Hours
- 1.3 COST of ELECTRICITY: Tariff R0. 50 Per kWh

LEARNER ACTIVITY NO: 6

An ELECTRICAL APPLIANCE takes a CURRENT of 12 A FROM a 240 V

1 CALCULATE THE:

- 1.1 RESISTANCE of the ELECTRIC WIRE.
- 1.2 POWER RATING of the ELECTRIC WIRE
- 1.3 ENERGY (HEAT) TRANSFERRED in 20 hours
- 1.4 COST of ELECTRICITY: Tariff R1. 50 Per kWh

Formula Sheet

$\mathbf{R} \mathbf{s} = \mathbf{R}_1 + \mathbf{R}_2$	$R_p = \frac{R 1.R 2}{R 1 + R 2}$	$\frac{1}{Rp} = \frac{1}{R1} + \frac{1}{R2} + \frac{1}{R3}$
(P =	$= \frac{W}{\Delta t}$) (P = VI) ($P = I^2 R$) ($P = \frac{V^2}{R}$)
V	$W = P \Delta t$: $W = I^2 F$	$R\Delta t$: W = $\frac{V^2}{R}\Delta t$: W = VI Δt

COST OF ELECTRICITY = (kW