

Education and Sport Development

Department of Education and Sport Development Departement van Onderwys en Sport Ontwikkeling Lefapha la Thuto le Tihabololo ya Metshameko

NORTH WEST PROVINCE

GRADE 10

MARKS: 75

TIME: 1 hour 30 minutes

This question paper consists of 6 pages and 2 diagram sheets

INSTRUCTIONS AND INFORMATION

- 1. This question paper consists of 5 questions Answer. ALL the questions.
- 2. Clearly show ALL calculations, diagrams, graphs, et cetera that you have used in determining the answers.
- 3. An approved scientific calculator (non-programmable and non-graphical) may be used, unless stated otherwise.
- 4. If necessary, answers should be rounded off to TWO decimal places, unless stated otherwise.
- 5. Diagrams are NOT necessarily drawn to scale.
- 6. Number the answers correctly according to the numbering system used in this question paper.
- 7. It is in your own interest to write legibly and to present the work neatly.

Question 1

In the diagram below, P(7; 4), Q(6; 6), R(0; 3) and S(t; k) are the vertices of quadrilateral PQRS.

		[21]
1.6	Calculate the size of $R \stackrel{\Lambda}{S} Q$.	(3)
1.5	Hence, what type of special quadrilateral is PQRS? Motivate your answer.	(2)
1.4	Show that QR \perp RS.	(5)
1.3	If the coordinates of S are $(1; 1)$, show that $PR = QS$.	(5)
1.2	If $T\left(\frac{7}{2}; \frac{7}{2}\right)$ is the midpoint QS, determine the coordinates of S	(3)
1.1	Calculate the length of PQ. Leave your answer in a surd form.	(3)

Question 2

2.1 Determine the value of each of the following by using a calculator. Write down the answers correct to 2 decimal places. $x = 112.4^{\circ}$ and $y = 48.6^{\circ}$

2.1.1
$$\frac{1}{2}\sin x$$
 (2)

2.1.2
$$\csc(x+y)$$
 (3)

$$2.1.3 \quad 2\cos\left(\frac{x+y}{2}\right) \tag{2}$$

$$2.1.4 \quad \tan\left(\frac{1}{3}x\right) \tag{2}$$

2.2 Determine the value of θ , if $\theta \in (0^\circ; 90^\circ)$

2.2.1
$$\tan \theta = 2,736$$
 (1)

2.2.2
$$3\sin(3\theta - 60^{\circ}) = 0,531$$
 (3)

[13]

Question 3

In the diagram below P (x; 5), OP = 13 units. Answer questions below without using a calculator.

- 3.1 Determine;
 - $3.1.1 \quad x$ (3)
 - 3.1.2 $\tan \alpha$ (1)
 - $3.1.3 \quad \sin^2 \alpha + \cos^2 \alpha \tag{2}$

3.1.4
$$Sec\alpha$$
 (2)

3.2 Simplify without using a calculator.

$$\frac{\cos ec20^{\circ}.\sin 20^{\circ} + \tan 45^{\circ}.\sec 60^{\circ}}{\cot 45^{\circ}.\sin 90^{\circ}}$$
(6)

[14]

(4)

Question 4

4.1 In the diagram below, KLMN is a rhombus with diagonals intersecting at O. $LKM = 34^{\circ}$

- 4.1.1 Write down the size of \hat{O}_1 . (2)
- 4.1.2 Calculate the size of L_1 . (2)
- 4.1.3 Calculate the size of KNM.

4.2 In the diagram given below, ABEF is a parallelogram

	Λ	
4.2.1	Express AFE in terms of x	(3)

[17

]

Question 5

The diagram represents parallelogram ABCD with BE = DF

5.3 AECF is a parallelogram (3)

[10]

6
Demo Martin III III IIII IIIIIIIIIIIIIIIIIIIIIII
NW/JUNE/MATH/ EMIS/6******

Q (6; 6)

Question 3

4.2

Question 5

