

Education and Sport Development

Department of Education and Sport Development Departement van Onderwys en Sport Ontwikkeling Lefapha la Thuto le Tihabololo ya Metshameko

NORTH WEST PROVINCE

NATIONAL SENIOR CERTIFICATE

GRADE 12

MARKS: 100

SYMBOL	EXPLANATION
Μ	Method
MA	Method with accuracy
CA	Consistent accuracy
Α	Accuracy
С	Conversion
S	Simplification
RT/RG /RD	Reading from a table/Reading from a graph /diagram
SF	Correct substitution in a formula
0	Opinion/Explanation
Р	Penalty, e.g. for no units, incorrect rounding off etc.
R/RCA	Rounding off/ Rounding with CA
NPR	No penalty for rounding OR omitting units
AO	Answer only full marks
MCA	Method with consistent accuracy

This marking guideline consists of 9 pages

Demo

NOTE:

- If a learner answers a question TWICE, only mark the FIRST attempt.
- If a learner has crossed out (cancelled) an attempt to a question and NOT redone the solution, mark the crossed out (cancelled) version.
- Consistent accuracy (CA) applies in ALL aspects of the marking guidelines, however it stops at the second calculation error.
 QUESTION 1 [36 MARKS]

Ques	Solution	Explanation	T & L
1.1.1	Probability = $\frac{5}{\sqrt{2}}$	1A numerator	Р
	$= 0.3125 \checkmark$	1A denominator	L2
	- 0,5125	1CA decimal number	
		NPR; AO (3)	
1.1.2	8 teams points increased \checkmark	1A number increased	D
	As a percentage = $\frac{8}{10} \times 100\%$ \checkmark	1MA % with denominator 16	L2
	$\begin{array}{c} 1 \\ -50\% \checkmark \end{array}$	1CA simplification	
	- 50/0	AO (3)	
1.1.3	Upper quartile = $\frac{44+40}{4} = 42\checkmark$	1A upper quartile	D
		1A lower quartile	L3
	Lower quartile = $\frac{1}{2} = 36^{\vee}$	1M subtraction	
	$IQR = 42 - 36\checkmark$	1CA IQR value	
	$=6\checkmark$	NOTE Max 2 marks if	
		quartiles are swapped and	
		the answer is positive.	
		(4)	
1.2	Annual taxable income = R1 500 000 \checkmark		F
	Income tax = $207\ 448 + 41\%(1\ 500\ 000 - 708\ 310)$	1A correct bracket	L3
	= 207 448 + 41% × 791 690✓	1MCA amount above	
	= 207 448 +324 592,90	1S simplification	
	= 532 040,90 √	1CA tax before rebate	
	Total income tax (after rebate)		
	= 532 040,90 − 13 635 √	1M subtracting rebate	
	= 518 405,90 √	1CA tax after rebate (6)	
1.3.1	Exchange rate $= \frac{440000000}{\sqrt{3}}$	1A identifying correct values	F
	Exchange rate = 3 300 000 000	1MA dividing	L2
	= 0,133	1CA answer (3)	
	$1 \text{ ZAR} = 0.13 \text{ USD} \checkmark$		
1.3.2	Penalty area = $16,5 \text{ m} \times 40,3 \text{ m}$		М
	$= 664, 95 \text{ m}^2 \checkmark$	1A area	L4
	Seed needed = 664, 95 m ² × 150 g/m ² ✓	1M multiplying with rate	
	= 99 742,5 g		
	= 99,7425 kg✓	1C Converting to kg	
	Rye seed = $\frac{3}{r} \times 99,7425 \text{ kg}\checkmark$	1 Converting to Kg	
	= 59.8455 kg	The working with ratio	
	$\approx 60 \text{ kg}$	ICA mass of rye seed	
	Statement is valid \checkmark	10 conclusion	
	OR	OR	
	Penalty area = $16.5 \text{ m} \times 40.3 \text{ m}$		
	$= 664.95 \text{ m}^2 \checkmark$	1A area	
	– 00 1 , 75 m ·	113 0100	

	$\frac{3}{2}$ of penalty area = $\frac{3}{2} \times 664.95 \text{ m}^2 \checkmark$	1M working with ratio		
	$\frac{5}{5} = \frac{308}{7} \frac{100}{100} \frac{100}{1$	1M multiplying with rate		
	$= 398.97 \text{ m}^2$ Rve seed $= 398.97 \text{ m}^2 \times 150 \text{ g/m}^2 \checkmark$	1CA mass of rve seed		
	$= 59.845.5 \text{ g} \div 1.000$	1C Converting to kg		
	= 59.84.55 kg	10 conclusion		
	$\approx 60 \text{ kg}$			
	Statement is valid			
	OR			
	Penalty area = $16.5 \text{ m} \times 40.3 \text{ m}$	IA area		
	$= 664, 95 \text{ m}^2 \checkmark$	1M working with ratio		
	$\frac{3}{2} \times 150 = 90$ g rye seed / m ² \checkmark	1M multiplying with rate		
	$90 \text{ g/m}^2 \times 664 95 \text{ m}^2 \checkmark$	1CA mass of rye seed		
	$= 59.845.5 \text{ g} \div 1.000 \checkmark$	1C Converting to kg		
	= 59.84.55 kg	10 conclusion		
	$\approx 60 \text{ kg}$	(6)		
	Statement is valid✓			
1.3.3	$10\ 997\ell = 10\ 997 \times 1\ 000\ \mathrm{cm}^3\checkmark$	1C Conversion	М	
	Inner diameter = $200 \text{ cm} - 2 \times 0.5 \text{ cm}$		L3	
	= 199 cm✓	1A calculating inner diameter		
	$r = \frac{199}{2} = 99,5 \text{ cm}\checkmark$	1MCA radius		
	$10.997\ 000 = 3.142 \times (99.5)^2 \times \ell \checkmark$	1SF correct values		
	10 997 000 (DP 10 997 000 (1M changing the subject of the		
	$\ell = \frac{1}{31106,5855}$ V OR $\frac{1}{3,142\times(99,5)^2}$	formula		
	$= 353,53 \text{ cm}\checkmark$	ICA length		
		NOTE: Max 5 marks II the		
		alculated		
		(6)		
134	(n): $P_{\text{(no rain on Friday)}} = 70\% \text{ OR } 0.7\checkmark$	1A for p	Р	
(a)	(a): $P(\text{no rain on Yilday}) = 40\% \text{ OR } 0.4\checkmark$	1A for a	L2	
(4)	(r): $\mathbf{P}_{(rain on Sat)} = 20\% \mathbf{OR} \ 0.2\checkmark$	$1 \text{A for r} \tag{3}$		
1.3.4	$P_{\text{(no rain on Fri and Sat)}} = 0.7 \times 0.8 \checkmark$	CA from 1.3.4 (a)	Р	
(b)	= 0,56	1MCA multiplying	L3	
	= 56% ✓	1CA answer		
		(2)		
			[36]	
QUES	TION 2 [31 MARKS]			
0.1.1			D	
2.1.1	$\mathbf{A} = \frac{2\ 284 - 2\ 367}{2\ 267} \checkmark \times 100\% \checkmark$	IMA subtracting correct values	D	
	= -3.5%	A denominator	L2	
		A negative simplification (2)		
212	<u>-93.2.82.41.25.12.07.05.52.07.</u>	(3)	σ	
2.1.2	$Median = -1.2 \% \checkmark$	1MCA arranging	13	
	11.2 /0 ·	1CA median		
		(2)		
2.1.3	The number of fatal crashes decreased for the EC	1A increased provinces	D	
	FS, KZN, MP, NW,WC ✓ and increased in GP. NC	1A decreased provinces	L4	
	and Lim✓ from 2016 to 2017.✓	1A stating period (3)		
			•	

2.1.4	Gauteng province is the business hub of South	20 reason	D
	Africa. $\checkmark\checkmark$		L4
	OR		2.
	There are many people coming and going out of it		
	daily for job opportunities $\sqrt{2}$		
	OR		
	There are many cars \checkmark		
	Any other relevant answer	(2)	
215	See Answer Sheet	1A Correct type of graph	D
2.1.5	See Answer Sheet	1A any 2 bars per province	13
		drawn correctly	L3
		(5)	
2.2.1	Lass obstructions ()	(J)	MD
2.2.1		20 Reason	
	UR Less time much an the model (L4
	Less time spent on the road v v		
	Saves fuel v		
	Any other relevant answer	(2)	10
2.2.2	Distance on the map : $4,5 \text{ cm}$ [Accept $4,4 - 4,7 \text{cm}$]	1M measure on map	MP
	4,5 cm : 545 km		L3
	4,5 : $545 \times 100\ 000\checkmark$	1C conversion	
	4,5 : 545 00 000		
	1 : 12111111,11	1CA answer	
	$1 : 12 111 000 \checkmark$	1RCA rounding with CA	
	OR		
	45 mm : 545 km✓	NOTE: Measure on final	
	45 mm : 545 000 000√	сору	
	1 : 121 11111,11✓	(4)	
	1 : 121 11000✓		
2.3.1	Full tanks = $\frac{545 \text{ km}}{\checkmark}$	1MA division	MP
	650 km		L4
	0.9294615295	1M multiplying by 2	
	= 0,8384015385		
	For a return trip = $0.8384615385 \times 2^{\circ}$	1RCA answer	
	= 1,6/69230//tanks	(3)	
	≈ 2 full tanks		
0.0.0	He will need 2 tull tanks.		
2.3.2	Total cost of petrol = $2 \text{ tanks} \times 55\ell \checkmark$	CA from 2.3.1	F
	-110ν	I IMCA multiplying by 55	L2
	- 110 t		
	$\frac{-110 \ell}{110 \ell \times R15,54}$	1M multiplying by R15,54	
	$= 110 t$ $110 t \times R15,54 \checkmark$ $= R1 709,40 \checkmark$	1M multiplying by R15,541CA answer(3)	
	$= 110 t$ $110 t \times R15,54 \checkmark$ $= R1 709,40 \checkmark$	1M multiplying by R15,54 1CA answer (3)	
2.4	$ \begin{array}{c} -110 \ \ell \\ 110 \ \ell \times R15,54 \checkmark \\ = R1 \ 709,40 \checkmark \end{array} $ Total operating cost	1M multiplying by R15,541CA answer1SF correct values	MP
2.4	$ \begin{array}{r} -110 \ \ell \\ 110 \ \ell \\ R15,54 \\ = R1 \ 709,40 \\ \hline $	1M multiplying by R15,541CA answer1SF correct values1M adding and multiplying	MP L3
2.4	$ \begin{array}{r} -110 \ \ell \\ 110 \ \ell \\ R15,54 \\ = R1 \ 709,40 \\ \hline $	1M multiplying by R15,541CA answer1SF correct values1M adding and multiplying1S answer in cents	MP L3
2.4	$ \begin{array}{r} $	1M multiplying by R15,541CA answer1SF correct values1M adding and multiplying1S answer in cents1CA answer in rand(4)	MP L3
2.4	$ \begin{array}{r} -110 \ \ell \\ 110 \ \ell \\ R15,54 \\ = R1 \ 709,40 \\ \hline $	1M multiplying by R15,541CA answer1SF correct values1M adding and multiplying1S answer in cents1CA answer in rand(4)	MP L3 [31]
2.4	$ \begin{array}{r} -110 \ t \\ 110 \ t \\ R15,54 \\ = R1 \ 709,40 \\ \hline $	1M multiplying by R15,541CA answer1SF correct values1M adding and multiplying1S answer in cents1CA answer in rand(4)	MP L3 [31]

QUEST	FION 3 [18 MARKS]		
3.1.1	To take struggling runners out of the race because	20 Reason	MP
	they are not coping \checkmark		L4
	OR		
	Helps organisers to plan for other scheduled		
	events√√		
	OR		
	If the road was closed it needs to be opened $\checkmark \checkmark$		
	OR		
	For runners to know whether they have a realistic		
	chance of finishing the race within the specified time	(2))
	for the race. \checkmark		
3.1.2	Distance = $90,184$ km		Μ
	Time = 5hrs 26min 35sec	1C Conversion of time	L2
	= 5,443055556 hrs	1M subject of the formula	
	Average speed = $\frac{90,184 \text{ km}}{5.442055556 \text{ brs}}$	ICA answer in correct unit	
	= 16.57 km/h	(3))
212			MD
3.1.3	Slight uphill on Botha's hill	IA mark per description	MP
	Small downhill down Botha's hill	(2	L2
2.2	Long downinin run to Pine Town \checkmark	()	M
3.2	Surface area = $2 \times 3,142 \times 3,25$ cm × 15,1 cm v = 208.4 cm^2	1 AP answer to 1 d p (2)	
2.2	- 506,4 CIII V Withdrawal foo of P20,000 at Park A	TAK answer to 1 d.p (2) L2 E
5.5	$-$ P5 05 \pm 0.015 \times P20 000 at Datik A	1SE substituting	
	$= R3.95 + 0.013 \times R20000$	1CA weekly charges	L/ 1
	$= R305,75^{\circ}$ Fees for A withdrawals: R305.95 $\times A^{\circ}$	1M multiplying by A	
	$- R1 223 80 \checkmark$	1CA fees for 4 withdrawals	
	Withdrawal fee for R20 000 at Bank B		
	$= R4.00 + 1.25\% \times R20.000$	1CA weekly charges	
	$= R254\checkmark$		
	Fees for 4 withdrawals = $R254 \times 4$		
	$= R1 016\checkmark$	1CA fees for 4 withdrawals	
	Difference in fees = $R1 223,80 - R1 016$	1CA difference	
	= R207,80✓	10 conclusion	
	Statement is valid ✓		
	OR	OR	
	Withdrawal fee of R20 000 at Bank A	1SF substituting	
	$= R5,95 + 0,015 \times R20\ 000\checkmark$	1CA weekly charges	
	= R305,95✓	1CA weekly charges	
	Withdrawal fee for R20 000 at Bank B	1MCA calculating the	
	= R4,00 + 1,25% × R20 000	difference	
	= R254✓	1CA difference	
	Difference in fees = $R305,95 - R254\checkmark$	1M fees for 4 withdrawals	
	$= R51,95\checkmark$	1CA saving	
	Saving on 4 withdrawals = $R51,95 \times 44$	10 conclusion	
	$= R207,80\checkmark$	(8))
	Statement is valid		F4.03
			[18]

QUEST	TION 4 [15 MARKS]		
4.1	Height $-\frac{186}{10} - 1.86 \text{ m/}$	1C Conversion	М
	$100 \\ 865 kg$	1SF substituting	L4
	$\mathbf{BMI} = \frac{\mathbf{00, 3 \text{ kg}}}{(1.86 \text{ m})^2} \checkmark$	1A answer	
	$= 25 \text{ kg/m}^2 \checkmark$	1CA Position in growth chart	
	Lies between the 50th and 75th percentile curves \checkmark	1CA opinion	
	The doctor's conclusion was valid \checkmark	(5)	
4.2.1	VAT amount = $R57.00 \times \frac{15}{\sqrt{2}}$	1MA multiplying	F
	$-\mathbf{R7}13\checkmark$	1A answer	L2
	$-\mathbf{R}^{\prime},+5^{\prime}$		
	Price excl VAT = R57 00 \div 1 15 \checkmark	OR	
	= R4957	1MA dividing by 1,15	
	VAT amount = $R57.00 - R49.57$		
	$= R7.43\checkmark$	1A answer (2)	
4.2.2	End of year $1 = R50\ 000 + (R50\ 000 \times 10,75\%)$	1MA calculating interest	F
	= R55 375✓	1CA amount	L4
	End of year $2 = 55\ 375 + (55375 \times 10,75\%)$	1CA amount after year 2	
	$=$ R61 327,81 \checkmark		
	Monthly fee = $R57 \times 24$	1A calculating monthly fee for	
	$=$ R1 368 \checkmark	24 months	
	Total cost of loan = R61 327,81 +R1 368 +R350 \checkmark	1M adding all values	
	$= R63\ 046,81\checkmark$	1CA total cost of loan	
	Difference in amounts = R63 046,81 - R50 000 \checkmark	1M subtracting amounts	
	$= R13\ 046,81$	10 verification	
	He is correct✓		
	OR	OR	
	Total amount +		
	Interest = $R50\ 000 \times 110, /5\% \times 110, /5\% \checkmark$	2M multiplying by 110,75%	
	= K01.527,01V	1 A calculating monthly fac for	
	$- D1 268 \checkmark$	24 months	
	$-$ K1 500 \vee Total cost of loan $-$ R61 327 81 \pm R1 368 \pm R350 \checkmark	1M adding all values	
	$- R63.046.81 \checkmark$	1CA total cost of loan	
	Difference in amounts = $R63.046.81 - R50.000 \checkmark$	1M subtracting amounts	
	= R13.046.81	10 verification	
	He is correct ✓	(8)	
		[15]	
		ΤΟΤΑΙ	.: 100

MARKING GUIDELINE

QUESTION 2.1.5

1A correct type of graph

 $4 \times 1A$ every other two bars correctly plotted

(5)

GRID: MATHEMATICAL LITERACY

GRADE/GRAAD: 12 MARKS/PUNTE : 100 TYPE OF ASSESSMENT/SOORT ASSESERING: JUNE EXAMINATION P2

Quest ion	Торіс	Section	Assessme	Total		
			Routine Procedures 25% ± 5%	Multi-step Procedures 35% ± 5%	Reasoning and reflecting 40% ±5%	
Indicat	e marks needed –	>	25	35	40	100
1.1.1	Probability	Expressions of Prob.	3			3
1.1.2	Data Handling	Classifying & organising data	3			3
1.1.3	Data Handling	Summarising Data		4		4
1.2	Finance	Income Tax		6		6
1.3.1	Finance	Exchange rates	3			3
1.3.2	Measurement	Calculating Area			6	6
1.3.3	Measurement	Calculating volume		6		6
1.3.4	Probability	Prediction and reps	3			3
1.3.4 (b)	Probability	To determine possible outcomes		2		2
			12	18	6	36
2.1.1	Data Handling	Representing data	3			3
2.1.2	Data Handling	Summarising Data		2		2
2.1.3	Data Handling	Interpreting data			3	3
2.1.4	Data Handling	Interpreting data			2	2
2.1.5	Data Handling	Representing data		5		5
2.2.1	Maps & Plans	Maps			2	2
2.2.2	Maps & Plans	Scale		4		4
2.3.1	Maps & plans	Planning a trip			3	3
2.3.2	Finance	Tariff	3			3
2.4	Maps & Plans	Planning a trip		4		4
			6	15	10	31

3.1.1.	Maps & Plans	Maps			2	2
3.1.2.	Measurement	Calculating speed	3			3
3.1.3	Maps & Plans	Elevation maps	3			2
3.2	Measurement	Calculating S/Area	2		2	2
3.3	Finance	Bank fees			8	8
			8		10	18
4.1.	Measurement/ DH	BMI/ Growth Charts			5	5
4.2.1	Finance	VAT	2			2
4.2.2	Finance	Interest and loans			8	8
			2		13	15
ТОТ			28	33	39	100
AL						
%			28%	33%	39%	100%