

Education and Sport Development

Department of Education and Sport Development Departement van Onderwys en Sport Ontwikkeling Lefapha la Thuto le Tihabololo ya Metshameko

I

NORTH WEST PROVINCE

NATIONAL SENIOR CERTIFICATE

GRADE 11

MATHEMATICAL LITERACY P2

MARKING GUIDELINES

JUNE 2018

. . .

MARKS: 75

l

1

I.

18

I.

CODES	EXPLANATION
Μ	Method
M/A	Method with accuracy
CA	Consistent accuracy
Α	Accuracy
С	Conversion
S	Simplification
RT/RG/RD	Read from table/graph/diagram
AO	Answer only
SF	Substitution in a formula
0	Opinion
Р	Penalty e.g. no units, incorrect rounding
R	Rounding off
J	Justification/Reason/Explain
NP	No penalty for rounding OR omitting units

This marking guidelines consists of 6 pages.

Ques	Solution	Explanation	TL	
	QUESTION 1 [18 MARKS]			
1.1.1	$\mathbf{P} = \mathbf{R450} + \mathbf{R0,}50 \times 250\checkmark$	1M multiplying and	F	
	= R450 + R125	adding	L2	
	$= R575\checkmark$	1A answer		
		AO		
		(2)		
1.1.2	$Q = R200 + R2 \times (200 - 100) \checkmark$	1M multiplying and	F	
	= R200 + R200	adding	L2	
	$= R400\checkmark$	1A answer		
		AO		
		(2)	-	
1.2	Cost of hiring a car		F	
	COSt of filling a car		L3	
	650			
	600 Option 1	1A(0.200)		
	550	111 (0,200)		
	500	1A any point between		
	450 Option 2	100 km and 300 km		
		1A (300;600)		
	¥ ³⁵⁰			
	ĝ 300	1A (350;700)		
	250			
	200	1A joining the points		
	150			
	100	IA naming the graphs		
	50	1 A handing		
		TA heading		
	0 50 100 150 200 250 300 350			
	Distance in km			
		(7)		
1.3	Breakeven point is the point where the cost of hiring a car for	20 explanation	F	
	option 1 and option 2 is the same for the same distance travelled. $\checkmark\checkmark$	•	L4	
		(2)		
1.4	Distance = time \times average speed		M	
	$250 \text{ km} = \text{time} \times 100 \text{ km/h}$	ISF substitution	L4	
	time = $\frac{250 \text{ km}}{100 \text{ km}} \checkmark$	1S change subject of		
	100 km/h	Iormula		
	time = 2,5 hours \checkmark	1CA time		
	2,5 hours = 2 hours 30 minutes \checkmark	10 minion		
	Jabulani's claim is incorrect. ✓			

	<u>O</u> P	OB	
		UK	
	2 hours 45 minutes = 2, /5 hours \checkmark	10.2 1	
	Distance = time \times average speed	1C time in nours	
	$250 \text{ km} = 2,75 \text{ h} \times \text{average speed}$	1SF substitution	
	average speed = $\frac{250 \text{ km}}{2.55 \text{ km}} \checkmark$	formula	
	2,75 h	1CA average speed	
	average speed = 90.9 km/ h°	10 opinion	
	Jabulani s claim is incorrect. V		
	OR	OR	
	2 hours 45 minutes = 2.75 hours \checkmark		
	Distance = time \times average speed		
	Distance = $2.75 \text{ h} \times 100 \text{ km/h}$	1C time in hours	
	$= 275 \text{ km} \checkmark \checkmark$	1SF substitution	
	Iabulani's claim is incorrect \checkmark	2CA distance	
		10 opinion	
	OUESTION 2 124 MARKS	(5)	
2.1	QUESTION 2 [24 MARKS]		М
2.1	Area of the four additional family members = $4 \times 0,7$ m ²	1M additional area	I 3
	$= 2.8 \text{ m}^2 \checkmark$		L3
	Total area = $(2 + 2,8) \text{ m}^2$		
	$=4,8 \text{ m}^2 \checkmark$	1A total answer	
	Area of rectangle = length \times breadth		
	4,8 m ² = length ×1,5 m \checkmark	1SF substitution	
	4,8	1S changing the subject of	
	$\frac{1}{1,5} = \text{length} \checkmark$	the formula	
		1CA length	
	$3,2 \text{ m} = \text{length} \checkmark$	(5)	
2.2	$150 \ l = 150 \ 000 \ \mathrm{cm}^3 \checkmark$	1C conversion	М
	Volume of cylinder = $\pi \times r^2 \times h$		L3
	$150\ 000\ \mathrm{cm}^3 = 3,142 \times \mathrm{r}^2 \times 120\ \mathrm{cm}\checkmark$	1SF substitution	
	150000	15 changing the subject of	
	$\frac{150000}{277.04} = r^2 \checkmark$	the formula	
	377,04	1S simplification	
	$307 8357734 - r^2 \checkmark$	1CA radius	
	10.04582005 - r	(5)	
	19,94302093 = 1		
231	$20 \text{ cm} = 1^{\circ}$		F
2.3.1	$Discount = \frac{1}{100} \times R11590$		I.4
	=R1 738,50✓	1A discount	
	Total cost required = R11 590 - R1 738,50 \checkmark	1M subtraction	
	$= R9 851,50\checkmark$	1CA total cost	
	Her claim is correct. 🗸	10 opinion	
		*	

	OR		
	100% -15% = 85 % ✓	OR	
	Total cost required = $\frac{85}{100} \times R11590$	1A percentage	
	$\frac{100}{-0.05150}$	1M multiplying with 85%	
	= K9 851,30V	1CA total cost	
	Her claim is correct. V	10 opinion	
		(4)	
2.3.2	Percentage = $\frac{350}{1000} \times 100\%$	1M multiplying and	F
(a)	-35%	dividing	L2
	- 5,5 %	1A percentage	
		(2)	
2.3.2	Total monthly repayments = $R764, 84 \times 36\checkmark$	1MA multiplying the	F
(b)	= 27 534,24 ✓	correct values	L2
	Interest = $R27534,24 - R10000$	1A total repayment	
	$= R17534.24\checkmark$	1CA interest	
		(3)	
2.3.3	In case of death $\checkmark \checkmark$	20 opinion	F
	OR		L4
	Permanent disability ✓ ✓		
	OR		
	Retrenchment		
	OR		
	Diagnosed with critical illness $\checkmark \checkmark$	(2)	
	Accept any relevant reason		
2.4	$^{\circ}F = 1.8 \times ^{\circ}C + 32^{\circ}$	1SF substitution	М
	$140^\circ = 1.8 \times ^\circ C + 32^\circ \checkmark$		L3
	108°	1S changing the subject of	
	$^{\circ}C = \frac{100}{1.8} \checkmark$	the formula	
	$^{\circ}C = 60^{\circ} \checkmark$	1A temperature	
		(3)	
	QUESTION 3 [17 MARKS]		
3.1	Measurement = $5,2 \text{ cm} \checkmark$ (Accept 5,1 cm to 5,3 cm)	1A measured distance	MP
	Scale 2,1 cm : 300 km✓ (Accept 2 cm to 2,2 cm)	1A measured scale	L3
	Actual distance = $\frac{5.2 \text{ cm} \times 300 \text{ km}}{\sqrt{300 \text{ km}}}$	1M using scale	
	$2,1 \ cm$		
	= 742, 86 km✓	1CA actual distance	
	OR		
		OR	
	Measurement = $52 \text{ mm} \checkmark$ (Accept 51 mm to 53 mm	1.4 1.12	
	Scale 21 mm : 300 km✓ (Accept 20 mm to 22 mm)	IA measured distance	
	52 mm ×300 km	1.4 1 1	
	Actual distance = $21 mm$	IA measured scale	
	= 742,86 km✓	1 WI using scale	
		ICA actual distance	
2.0		$\mathbf{NFK} \qquad (4)$	Г
3.2	Cost of half full tank = $R14,01 \times 30 \checkmark$	1 M multiplying	Г т 4
		1A cost	L4

	$= R420.30\checkmark$	10 opinion	
	The gauge was properly working \checkmark	OR	
	OR		
	R420,30	1M dividing	
	No. of litres = $\frac{1}{R14.01}$	1A number of litres	
	= 30 eV	10 opinion	
	The gauge was properly working \checkmark	(3)	
3.3	Distance covered = $\frac{30 \ell \times 100 km}{km}$	CA from 3.1 & 3.2	MP
	Distance covered $= \frac{9\ell}{9\ell}$	1M working with	L4
	= 333 km	consumption rate	
		1CA distance covered	
	Distance left to East London = $742,86 \text{ km} - 333 \text{ km}$		
	$=409,86$ km \checkmark	1CA remaining distance	
	Mr Thibedi's claim is not valid. ✓	10 opinion (4)	
3.4	From East London take N2 ✓ pass Port Elizabeth. ✓ At Knysna✓	1A N2	MP
	take N12✓ to Beaufort West.	1A Port Elizabeth	L3
		1A Knysna	
		1A N12	
	OR	OR	
		1A N2	
	From East London take N2 \checkmark then before you reach Port Elizabeth \checkmark	1A Port Elizabeth	
	join N10. \checkmark Continue straight until you cross N9 then join N1 \checkmark to	1A N10 and N9	
	Beaufort West.	1A N1	
		(4)	
3.5	Fixing a tyre burst ✓ ✓	20 opinion	MP
	OR		L4
	Buying food ✓ ✓		
	OR		
	Going to bathroom ✓ ✓		
	OR		
	Stretch legs ✓ ✓		
	Accept any relevant reason	(2)	
	QUESTION 4 [16 MARKS]	1	
4.1	Height of the mountain = 3559×12 inches		Μ
	= 42 708 inches ✓	1C conversion	L3
	$=\frac{42.708}{100}$ metres \checkmark	1A height in inches	
	39,37	1C conversion	
	-1.084.78537 matrix		
	= 1.084,78537 metres	1CA height in metres	
	= 1 084,78537 metres ≈ 1 085 metres ✓	1CA height in metres (4)	
4.2	= 1 084,78537 metres ≈ 1 085 metres ✓ From 08:30 to 18:00 = 9 hours 30 minutes ✓	1CA height in metres (4) 1A duration	M
4.2	$= 1\ 084,78537\ \text{metres}$ $\approx 1\ 085\ \text{metres}\checkmark$ From 08:30 to 18:00 = 9 hours 30 minutes \scalering = 570 minutes \scalering \scalering \scalering \scalering = 570 minutes \scalering \scalering \scalering = 570 minutes \scalering \scale	1CA height in metres (4) 1A duration 1C conversion	M L4
4.2	$= 1\ 084,78537\ \text{metres}$ $\approx 1\ 085\ \text{metres}\checkmark$ From 08:30 to 18:00 = 9 hours 30 minutes = 570\ \text{minutes}\checkmark number of trips = $\frac{570\ \text{minutes}}{}$	1CA height in metres (4) 1A duration 1C conversion 1M dividing with 30	M L4
4.2	$= 1\ 084,78537\ \text{metres}$ $\approx 1\ 085\ \text{metres}\checkmark$ From 08:30 to 18:00 = 9 hours 30 minutes = 570\ \text{minutes}\checkmark number of trips = $\frac{570\ \text{minutes}}{30\ \text{minutes}}\checkmark$	1CA height in metres (4) 1A duration 1C conversion 1M dividing with 30 1A number of trips	M L4
4.2	$= 1\ 084,78537\ \text{metres}$ $\approx 1\ 085\ \text{metres}\checkmark$ From 08:30 to 18:00 = 9 hours 30 minutes = 570\ \text{minutes}\checkmark number of trips = $\frac{570\ \text{minutes}}{30\ \text{minutes}}\checkmark$ = 19	1CA height in metres (4) 1A duration 1C conversion 1M dividing with 30 1A number of trips	M L4
4.2	$= 1\ 084,78537\ \text{metres}$ $\approx 1\ 085\ \text{metres}\checkmark$ From 08:30 to 18:00 = 9 hours 30 minutes \checkmark $= 570\ \text{minutes}\checkmark$ number of trips = $\frac{570\ \text{minutes}}{30\ \text{minutes}}\checkmark$ $= 19\ \checkmark$ The operator's statement is correct. \checkmark	1CA height in metres(4)1A duration1C conversion1M dividing with 301A number of trips1O opinion	M L4

	OR	OR	
	30 minutes = 0,5 hour \checkmark	1C conversion	
	From 08:30 to $18:00 = 9,5$ hours \checkmark	1A duration	
	9,5 hours	1M dividing with 30	
	number of trips = $\frac{1}{0.5 \text{ hour}}$	1A number of trips	
	= 19 🗸	10 opinion	
	The controller's statement is correct. \checkmark	(5)	
4.3	$8+5=13\checkmark$	1A adding ratio values	М
	Number of adults = $\frac{8}{3} \times 65\sqrt{3}$	1M using ratio values	L2
		1A number of adults	
	=40 V	(3)	
4.4	Total cost = $40 \times 7,6 \$ + 25 \times 4,8 \$ \checkmark$	CA from 4.3	F
	=424 \$ 1	1M multiplying and	L4
	$- P \frac{424}{\sqrt{2}} \sqrt{2}$	adding	
	$= R \frac{1}{0.08}$	1CA cost in \$	
	= R5 300	1C conversion	
	The cashier's claim is valid. 🗸		
		10 opinion	
	OR		
	Adult rate = $R \frac{7.6}{0.08} = R95 \checkmark$	OR	
	Children's set $\mathbf{p}^{4,8} = \mathbf{P}(0, \mathbf{r})$	1A adult rate	
	$C m drem s rate = R \frac{1}{0,08} - R 00 V$	1A children's rate	
	$Total \cos t = R95 \times 40 + R60 \times 25 \checkmark$	IM multiplying and	
	= R5 300	adding	
	The cashier's claim is valid. ✓	10 opinion	
		(4)	