

## **Education and Sport Development**

Department of Education and Sport Development Departement van Onderwys en Sport Ontwikkeling Lefapha la Thuto le Tihabololo ya Metshameko

#### NORTH WEST PROVINCE

# **NATIONAL SENIOR CERTIFICATE**

**GRADE 11** 

**TECHNICAL SCIENCES** 

**2018 JUNE EXAMINATION MEMORANDUM** 

**MARKS: 150** 

**TIME: 3 HOURS** 

This memorandum consists of 10 pages



NW/JUNE/TEC-SCNE/ EMIS/6\*\*\*\*\*

#### **QUESTION 1**

1.1. D √√

1.2. C √√

1.3. D √√

1.4. B √√

1.5. B √√

1.6. D √√

1.7. B √√

1.8. B  $\sqrt{\ }$ 

#### **QUESTION 2**

2.1 E √√

2.2 H √√

2.3 F √√

2.4 A √√

2.5 B √√

2.6 G √√

2.7 D √√

2.8 C √√

[16]

#### **QUESTION 3**



[9]

| 4.1   | A single vector that has the same effect as all the other vectors acting                                        |      |  |  |
|-------|-----------------------------------------------------------------------------------------------------------------|------|--|--|
|       | on an object $\sqrt{}$                                                                                          | (2)  |  |  |
| 4.2.1 | <b>4</b> 20 N → 30 N → √√ √√                                                                                    | (4)  |  |  |
| 4.2.2 | $\vec{F}_R = \vec{F}_1 + \vec{F}_2 \qquad \sqrt{\vec{F}_R} = 30 + (-20)$                                        |      |  |  |
| 4.3.1 | $\vec{F}_{R} = 10N$ (3) $\vec{F}_{R}^{2} = \vec{F}_{1}^{2} + \vec{F}_{2}^{2}  $                                 |      |  |  |
|       | $\vec{F}_{R}^{2} = 2^{2} + 5^{2}  \forall$ $\vec{F}_{R} = 5{,}39  N  \forall$                                   | (3)  |  |  |
| 4.4.1 | $\vec{f}_{x} = \vec{F} \cos \theta$ $\vec{f}_{x} = 20 \cos 40^{\circ}$ $\vec{f}_{x} = 15.32N \qquad $           | (2)  |  |  |
| 4.4.2 | $\vec{f}_{y} = \vec{F} \sin \theta$ $\vec{f}_{y} = 20 \sin 40^{\circ} \sqrt{1}$ $\vec{f}_{y} = 12.86N \sqrt{1}$ | (3)  |  |  |
| 4.4.3 | $F_{A} = 20N$ 12,89 N $\sqrt{15,32}$ N                                                                          | (3)  |  |  |
|       | IJ,J∠ IN<br>√                                                                                                   | (3)  |  |  |
|       |                                                                                                                 | [21] |  |  |

#### **GRADE 11 - NSC MEMORANDUM**

#### **QUESTION 5**

| 5.1 | FOR F <sub>1</sub>                                                                                                                                    | FOR F <sub>2</sub>                                                                                                        |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|
|     | $\vec{f}_{1x} = \vec{F}_1 \cos \theta$ $\vec{f}_{1x} = 20 \cos 37^{\circ}$ $\vec{f}_{1x} = 15.97N \text{ To the Right } $                             | $\vec{f}_{2x} = \vec{F}_2 \cos\theta$ $\vec{f}_{2x} = 40 \cos 53^{\circ}$ $\vec{f}_{2x} = 24.07N \text{ To the}$ Right $$ |
|     | $\vec{f}_{1Y} = \vec{F}_1 \sin \theta$ $\vec{f}_{1Y} = 20 \sin 37^\circ$                                                                              | $\vec{f}_{2y} = \vec{F}_2 \sin \theta$                                                                                    |
|     | $\vec{f}_{1Y} = 12.04N \text{ Upward}$                                                                                                                | $\vec{f}_{2y} = 40\sin 53^{\circ}$ $\vec{f}_{2y} = 31.95N \text{ Downward } \sqrt{}$                                      |
|     | RESULTANT                                                                                                                                             |                                                                                                                           |
|     | $\vec{f}_{x(RES)} = \vec{F}_{1x} + \vec{F}_{2x}$                                                                                                      | $\vec{f}_{y(RES)} = \vec{F}_{1y} + \vec{F}_{2y}$                                                                          |
|     | $\vec{f}_{x(RES)} = 15.97 + 24.07$ $\vec{f}_{x(RES)} = 40.04N \text{ RIGHT}$                                                                          | $\vec{f}_{y(RES)} = 12.04 + (-31.95)$                                                                                     |
|     | $f_{x(RES)} = 40.04N$ RIGHTV                                                                                                                          | $\vec{f}_{y(RES)} = -19.91N$ $\vec{f}_{y(RES)} = 19.91N$                                                                  |
|     |                                                                                                                                                       | Downward√                                                                                                                 |
|     | $\vec{F}_{Res}^{2} = \vec{F}_{x(Res)}^{2} + \vec{F}_{y(Res)}^{2}$ $\vec{F}_{Res} = \sqrt{(40.04)^{2} + (19.91)^{2}}$ $\vec{F}_{Res} = 44.7N \sqrt{1}$ | 19.09 N                                                                                                                   |
|     | * Kes                                                                                                                                                 | (8)                                                                                                                       |

$$\tan \theta = \frac{\vec{F}_{y(Res)}}{\vec{F}_{x(Res)}} = \frac{19.91}{40.04} \sqrt{\sqrt{\frac{\theta = \tan^{-1}(0.497)}{40.04}}} \sqrt{\frac{\theta = \tan^{-1}(0.497)}{\sqrt{\frac{\theta = 0.46^{\circ} \sqrt{\frac{\theta = 90^{\circ} + 0.45^{\circ} = 90.45^{\circ}}{\frac{\theta = 90^{\circ} + 0.45^{\circ} = 90.45^{\circ}}{\frac{\theta = 90.45^{\circ}}{\frac{$$

[13]

#### **QUESTION 6**



$$\begin{array}{c|c}
\hline
6.1.2 & \overrightarrow{F}_2 = mg \\
& = 2 \times 9.8 \sqrt{} \\
\overrightarrow{F}_2 = 19.6N \sqrt{}
\end{array}$$

#### 6.2 Construction

1cm:3N 
$$\sqrt{\vec{F}_1} = 29.4N = 9.8cm$$
  
 $\vec{F}_2 = 19.6N = 6.5cm$ 



$$\vec{F}_3 = \pm 8.2cm$$

$$\therefore \vec{F}_3 = \pm 24.5N$$

$$\overrightarrow{F}_3 = \overrightarrow{W} = mg = 24.5$$

$$\therefore 24.5 = m(9.8)$$

$$m = \frac{24.5}{9.8}$$

$$m = 2.5 \ kg \sqrt{}$$

[11]

(6)

(2)

The force that opposes the tendency of motion of a stationary object relative to a surface. 7.1.1. Force that acts between two surfaces when the object is stationary. (2) 7.1.2. The perpendicular force exerted by a surface on an object that lies on that surface Or

A perpendicular force exerted by a surface on an object resting on it.



7.2.2 
$$\vec{N} = \vec{W} = mg \sqrt{$$

$$= (5)(9.8) \sqrt{}$$

$$\vec{N} = 49N \sqrt{}$$

7.2.3 
$$\vec{F}_{s} = \mu_{s} N \sqrt{\frac{1}{2}} = (0.21)(49) \sqrt{\frac{1}{2}} = 10.29N \sqrt{\frac{1}{2}}$$
 (3)

[14]

| 8.1 | A material that can attract other materials and has two poles called north and south $\sqrt{}$ Or An object that has a pair of opposite poles called north and south.        |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     | (2)                                                                                                                                                                          |
| 8.2 | The magnetic field lines can be shown by using iron fillings and a blank page.                                                                                               |
|     | Put the magnet on a flat surface $\sqrt{}$<br>Put a blank page over the magnet $\sqrt{}$<br>Slowly spread iron fillings on top of the page as you are pouring them $\sqrt{}$ |
| 8.3 | Dropping √                                                                                                                                                                   |



| 9.1.1 | Distance between any two successive points that are in phase on a wave. $\sqrt{\vee}$          | (2) |
|-------|------------------------------------------------------------------------------------------------|-----|
| 9.1.2 | The highest point of a wave. $\sqrt{}$ Or                                                      | (2) |
| 0.4.0 | The upper most point on a transverse wave.                                                     | (2) |
| 9.1.3 | The maximum displacement of a particle in a wave or pulse from its position of rest. $\sqrt{}$ |     |
|       |                                                                                                | (2) |
| 9.1.4 | The time taken to complete one full vibration or wave. $\sqrt{}$                               |     |
|       | (2)                                                                                            |     |

9.2.1 When two waves meet at the same point simultaneously, the net amplitude is the algebraic sum of the amplitudes of the two individual wave displacements.  $\sqrt{\sqrt{}}$ 

(2)

9.2.2 A.

$$A_{(Net)} = A_a + A_b \qquad \sqrt{$$

$$= 10cm + 10cm \qquad \sqrt{}$$

$$A_{(Net)} = 20cm \qquad \sqrt{}$$

(2)

B. 
$$A_{(Net)} = A_a + (-A_b)$$
  $\sqrt{100}$   $= 10 + (-10)$   $\sqrt{100}$ 

$$A_{(Net)} = 0cm \quad \sqrt{ \tag{2}}$$

9.3.1



#### **CRITERIA**

- Wave shape√
- Wave length√
- Wave amplitude√

9.3.2  $Amplitude = \frac{14mm}{2} \sqrt{ }$ 

 $=7mm \qquad \qquad \checkmark \tag{2}$ 

9.3.3 Length =  $\frac{60 \text{ mm}}{6} \sqrt{\phantom{0}}$ 

= 10 mm (equals to the length of one full wave)  $\sqrt{\phantom{a}}$ 

 $\therefore \lambda = 10 \text{ mm} \sqrt{ } \tag{3}$ 

9.3.4  $T = \frac{1}{c}$ 

 $T = \frac{1}{60}$   $\sqrt{}$ 

9.3.5 
$$\vec{v} = f\lambda \quad \sqrt{\phantom{a}}$$

$$= (60)(10 \times 10^{-3}) \quad \sqrt{\phantom{a}}$$

$$\vec{v} = 0.6 \quad m \cdot s^{-1} \quad \sqrt{\phantom{a}}$$
Or
$$\vec{v} = \frac{\lambda}{T} \quad \sqrt{\phantom{a}}$$

$$= \frac{10 \times 10^{-3}}{0.017} \quad \sqrt{\phantom{a}}$$

$$\vec{v} = 0.6 \quad m \cdot s^{-1} \quad \sqrt{\phantom{a}}$$

$$\vec{v} = 0.6 \quad m \cdot s^{-1} \quad \sqrt{\phantom{a}}$$
(3)

9.4  $\vec{v} = \frac{\Delta x}{\Delta t} \quad \sqrt{\phantom{a}}$ 

$$343 = \frac{\Delta x}{3.2} \quad \sqrt{\phantom{a}}$$

$$= 343 \times 3.2 \quad \Delta x = 1097.6 \quad m \quad \sqrt{\phantom{a}}$$

$$\therefore \text{ Distance between learner and building} = \frac{\Delta x}{2}$$

$$\therefore \Delta x = \frac{1097.6}{2} \quad \text{(Dividing by answer by 2)} \quad \sqrt{\phantom{a}}$$
NB: learners may divide the total time taken by 2 before using it to the calculations. Please award full marks for such approach.
$$\Delta x = 548.8 \quad m \quad \sqrt{\phantom{a}}$$
(5)

[33]

[TOTAL: 150]